搜索
首页 教育/科学 理工学科 数学

设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k

设离心率为e的双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线的左右两支都相交的充要条件是? 答案是e^2-k^2>1 求解释

全部回答

2018-05-20

0 0
依题意可设直线方程为:y=k(x-c)代入双曲线方程得:(b^2-a^2k^2)x^2 2a^2k^2cx-a^2k^2c^2-a^2b^2=0,方程有两根,可设为x1>0,x20即可b^2-a^2k^2=c^2-a^2-a^2k^2=a^2e^2-a^2-a^2k^2=a^2(e^2-1-k^2)>0e^2-1-k^2>0,e^2-k^2>1

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
数学
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
学习帮助
K12
理工学科
数学
农业科学
生物学
建筑学
心理学
天文学
工程技术科学
化学
环境学
地球科学
生态学
物理学
数学
数学
举报
举报原因(必选):
取消确定举报