“倘若沿x轴正半轴方向的方向导数与沿x轴负半轴方向的方向导数【不是相反数】,则对x的偏导数就不存在了”您可以再加以解释一下吗 我的理解是:假设此函数对x偏导数存在,且为|x|/x,则值可能为1或-1,按照“偏导数能推出沿各坐标轴方向导数”,则沿x轴的方向导数值就也可能为1或-1,而实际计算可得方向导数为1,所以假设不成立,即偏导数不存在。 我只是逻辑上的解释,请问老师是否有妥当的数学概念上的解析,谢谢!
来***
2018-03-12
S***
2008-04-04
导数(derivative)亦名微商,由速度问题和切线问题抽象出来的数学概念。又称变化率。如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。 为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置x与时间t的关系为x=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)/t1-t0],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t0)/t1-t0]...全部
导数(derivative)亦名微商,由速度问题和切线问题抽象出来的数学概念。又称变化率。如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。 为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置x与时间t的关系为x=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)/t1-t0],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t0)/t1-t0] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度。 一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。 若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数。函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0[x0,f(x0)] 点的切线斜率。 导数是微积分中的重要概念。导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 。收起
泉州哪家男科好?
100人阅读
做爱后阴道出血是怎么回事?
41人阅读
成都无痛人流哪家好棕南
47人阅读
兰州比较好的男科医院在哪里?(兰州利民医院)男科
31人阅读
哈尔滨宾县医院有没有无痛引产
0人阅读
长春早孕检查费用
1人阅读
2015-10-20
2015-12-03
2016-03-28
2015-06-14
2015-12-31
2015-12-22
2016-03-10
2015-11-27
2016-01-07
2015-11-18
2016-05-03
2015-08-21
2016-04-26
2015-09-28
2015-11-02
2020-02-29
2016-09-05
2018-11-20
2017-10-20
2016-04-12
2018-01-05
2017-03-21
2018-03-09
2017-05-24
2023-09-16
广告或垃圾信息
不雅词句或人身攻击
色情淫秽
诈骗
激进时政或意识形态话题
侵犯他人隐私
其它违法和不良信息