高中数学已知a?b?c,求证:a
(1)a^2b+b^2c+c^2a-ab^2-bc^2-ca^2
=a^2(b-c)+a(c^2-b^2)+bc(b-c)
=a^2(b-c)-(ab+ac)(b-c)+bc(b-c)
=(b-c)(a^2-ac-ab+bc)
=(b-c)[a(a-c)-b(a-c)]
=(b-c)(a-b)(a-c)
因为a>b>c,
所以b-c>0, a-b>0, a-c>0,
所以(b-c)(a-b)(a-c)>0,
即a^2b+b^2c+c^2a-ab^2-bc^2-ca^2>0,
所以a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
(2)(bc/a)+(ca/b)+(ab/c)=(b...全部
(1)a^2b+b^2c+c^2a-ab^2-bc^2-ca^2
=a^2(b-c)+a(c^2-b^2)+bc(b-c)
=a^2(b-c)-(ab+ac)(b-c)+bc(b-c)
=(b-c)(a^2-ac-ab+bc)
=(b-c)[a(a-c)-b(a-c)]
=(b-c)(a-b)(a-c)
因为a>b>c,
所以b-c>0, a-b>0, a-c>0,
所以(b-c)(a-b)(a-c)>0,
即a^2b+b^2c+c^2a-ab^2-bc^2-ca^2>0,
所以a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
(2)(bc/a)+(ca/b)+(ab/c)=(b^2*c^2+a^2*b^2+a^2c^2)/abc
下面证明单独证明分子b^2*c^2+a^2*b^2+a^2c^2
b^2*c^2+a^2*b^2+a^2*c^2
=1/2*(b^2*c^2+a^2*b^2+a^2*b^2+a^2*c^2+b^2*c^2+a^2*c^2)
≥1/2*(2acb^2+2bca^2+2abc^2) (利用均值不等式, a=b=c时取等号)
=acb^2+bca^2+abc^2
=abc*(a+b+c)
所以(bc/a)+(ca/b)+(ab/c)
=(b^2*c^2+a^2*b^2+a^2c^2)/abc
≥abc*(a+b+c)/abc=a+b+c (a=b=c时取等号)
所以(bc/a)+(ca/b)+(ab/c)≥a+b+c 得证
。
收起