数学积分问题2
化为累次积分
∫∫D(x^2-y^2)dxdy
=∫(0,π)dx∫(0,sinx)(x^2-y^2)dy(积分限是0到π和0到sinx)
=∫(0,π)(x^2y-y^2/3)|(0,sinx)dx
=∫(0,π)[x^2sinx-(sinx)^3]dx
=∫(0,π)x^2sinxdx-∫(0,π)(sinx)^3dx
∫x^2sinxdx=-x^2cosx-∫-2xcosxdx
=-x^2cosx+∫2xcosxdx=-x^2cosx+2xsinx-∫2sinxdx
=-x^2cosx+2xsinx+2cosx+C,
∫(0,π)x^2sinxdx=π^2-4,
∫(sinx)^3d...全部
化为累次积分
∫∫D(x^2-y^2)dxdy
=∫(0,π)dx∫(0,sinx)(x^2-y^2)dy(积分限是0到π和0到sinx)
=∫(0,π)(x^2y-y^2/3)|(0,sinx)dx
=∫(0,π)[x^2sinx-(sinx)^3]dx
=∫(0,π)x^2sinxdx-∫(0,π)(sinx)^3dx
∫x^2sinxdx=-x^2cosx-∫-2xcosxdx
=-x^2cosx+∫2xcosxdx=-x^2cosx+2xsinx-∫2sinxdx
=-x^2cosx+2xsinx+2cosx+C,
∫(0,π)x^2sinxdx=π^2-4,
∫(sinx)^3dx=∫sinx*(sinx)^2dx
=∫[1-(cosx)^2]d(-cosx)=∫[(cosx)^2-1]d(cosx)
=(cosx)^3/3-cosx+C
∫(0,π)(sinx)^3dx=4/3,
原积分=π^2-4-4/3=π^2-16/3。
收起