搜索
首页 教育/科学 学习帮助

过抛物线焦点

过抛物线焦点的一条直线与它交于两点P,Q,经过点P和抛物线顶点的直线交准线于点 M,求沿直线MQ平行于抛物线的对称轴.

全部回答

2018-02-11

0 0
    过抛物线焦点的一条直线与它交于两点P,Q,经过点P和抛物线顶点的直线交准线于点 M,求证:直线MQ平行于抛物线的对称轴. 证明:建立平面直角坐标系, 抛物线方程为C:y^=2px,准线方程l:x=-p/2,顶点坐标O(0,0),焦点坐标F(p/2,0) P、Q坐标为(2pt^,2pt)、(2ps^,2ps),s≠t 直线PO方程:y=x/t,与准线方程联立:M坐标为(-p/2,-p/(2t)) PQ过F:2pt/(2pt^-p/2)=2ps/(2ps^-p/2) t/(2t^-1/2)=s/(2s^-1/2) 2st^-s/2=2s^t-t/2 2st(t-s)=-(t-s)/2 s≠t---->s=-1/(4t) ∴Q点纵坐标=2ps=-p/(2t)=M点纵坐标 ∴直线MQ平行于抛物线的对称轴(x轴).。
    。

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
学习帮助
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
K12
学习帮助
学习帮助
举报
举报原因(必选):
取消确定举报