已知函数f(x)=ax2-2bx+a(a,b∈R).(1)若a从集合{0,1,2...
∵a取集合{0,1,2,3}中任一个元素,b取集合{0,1,2,3}中任一个元素∴a,b取值的情况是:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(0,3),(1,3),(2,3),(3,3)其中第一个数表示a的取值,第二个数表示b的取值.即基本事件总数为16。 设“方程f(x)=0恰有两个不相等的实根”为事件A当a≥0,b≥0时,方程f(x)=0恰有两个不相等实根的充要条件为b>a且a不等于零当b>a且a≠0时,a,b取值的情况有(1,2),(1,3),(2,3)即A包含的基本事件数为3...全部
∵a取集合{0,1,2,3}中任一个元素,b取集合{0,1,2,3}中任一个元素∴a,b取值的情况是:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(0,3),(1,3),(2,3),(3,3)其中第一个数表示a的取值,第二个数表示b的取值.即基本事件总数为16。
设“方程f(x)=0恰有两个不相等的实根”为事件A当a≥0,b≥0时,方程f(x)=0恰有两个不相等实根的充要条件为b>a且a不等于零当b>a且a≠0时,a,b取值的情况有(1,2),(1,3),(2,3)即A包含的基本事件数为3,∴方程f(x)=0恰有两个不相等实根的概率P(A)=。
3/16(2)由b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数则试验的全部结果构成区域{}{(a,b)|0≤a≤3,0≤b≤2},这是一个矩形区域,其面积Sa=2×3=6。设“方程f(x)=0没有实根”为事件B,则事件B所构成的区域为{(a,b)|0≤a≤3,0≤b≤2,a>b}.其面积Sb=6-×2×2=4,由几何概型的概率计算公式可得:方程f(x)=0没有实根的概率已知函数f(x)=ax2-2bx+a(a,b∈R).(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.∵a取集合{0,1,2,3}中任一个元素,b取集合{0,1,2,3}中任一个元素∴a,b取值的情况是:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(0,3),(1,3),(2,3),(3,3)其中第一个数表示a的取值,第二个数表示b的取值.即基本事件总数为16。
设“方程f(x)=0恰有两个不相等的实根”为事件A当a≥0,b≥0时,方程f(x)=0恰有两个不相等实根的充要条件为b>a且a不等于零当b>a且a≠0时,a,b取值的情况有(1,2),(1,3),(2,3)即A包含的基本事件数为3,∴方程f(x)=0恰有两个不相等实根的概率P(A)=。
(2)由b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数则试验的全部结果构成区域{}{(a,b)|0≤a≤3,0≤b≤2},这是一个矩形区域,其面积Sa=2×3=6。
设“方程f(x)=0没有实根”为事件B,则事件B所构成的区域为{(a,b)|0≤a≤3,0≤b≤2,a>b}.其面积Sb=6-×2×2=4,由几何概型的概率计算公式可得:方程f(x)=0没有实根的概率已知函数f(x)=ax2-2bx+a(a,b∈R).(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.。收起