搜索
首页 教育/科学 理工学科 数学

已知集合A={0

已知集合A={0,1,2,3,4},从A中任取三个元素作为圆方程(x-a)^2+(y-b)^2=r^2中的a,b,r,则所得的方程中圆面积大于20的概率是______.为什么?

全部回答

2011-02-27

0 0
圆半径不能为零,在4个非零数字中取1个为半径,在其他4个数中取2个决定位置,共有4*P(4,2)=48种方法。 圆面积大小取决于圆的半径r, r=3或4时,圆面积大于20。 从3或4中任取1个为半径,剩下4个中任取两个确定位置,有 2*P(4,2)=24种取法, 圆面积大于20的概率是24/48=1/2.

2011-02-27

39 0
r可取0,1,2,3,4,有五种取法。 r=0时,称为点圆,面积等于0; r=1,2时,圆面积小于20。 r=3,4时,圆面积大于20。 有利事件总数为2。 所以,圆面积大于20的概率是2/5.

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
数学
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
学习帮助
K12
理工学科
数学
农业科学
生物学
建筑学
心理学
天文学
工程技术科学
化学
环境学
地球科学
生态学
物理学
数学
数学
举报
举报原因(必选):
取消确定举报