数学公式.如何计算1/a+1/a
你好!你所给的式子为等比数列。
其求和又简便算法,也就是有公式可以直接套用,但须分情况讨论:
1。等比数列的公比为零,
2。等比数列的公比不为零(非零)。
Sn=n*a1(公比q=1时)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于 1)
注意:上述公式中A^n表示A的n次方。
另外,给你补充一下等比数列:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠...全部
你好!你所给的式子为等比数列。
其求和又简便算法,也就是有公式可以直接套用,但须分情况讨论:
1。等比数列的公比为零,
2。等比数列的公比不为零(非零)。
Sn=n*a1(公比q=1时)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于 1)
注意:上述公式中A^n表示A的n次方。
另外,给你补充一下等比数列:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
等比数列有如下性质:
①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列。
“G是a、b的等比中项”“G^2=ab(G≠0)”。
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(4) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零。
注意:上述公式中A^n表示A的n次方
(5)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
如果还有不懂的地方,尽管问。收起