求助:一道数列题设数列{an}满
(1)证明:假设对an有an>√(2n+1),则有
an^2>2n+1……………………①
由an+1> an+(1/ an)>0知
an+1^2=an^2+2+1/an^2………②
①代入②得
an+1^2>2n+3
即an+1>√(2n+3)=√[2(n+1)+1]
因为a1=2>√3=√(2*1+1),由上面证明知:
an>√(2n+1)对一切正整数n成立
(2)答:
证明:bn-bn+1=[an√(n+1)-an+1√n]/√(n^2+n)
=[an√(n+1)-(an√n+√n/an)]/√(n^2+n)
[an√(n+1)]^2=an^2*n+an^2>an^2*n+2n+1
(...全部
(1)证明:假设对an有an>√(2n+1),则有
an^2>2n+1……………………①
由an+1> an+(1/ an)>0知
an+1^2=an^2+2+1/an^2………②
①代入②得
an+1^2>2n+3
即an+1>√(2n+3)=√[2(n+1)+1]
因为a1=2>√3=√(2*1+1),由上面证明知:
an>√(2n+1)对一切正整数n成立
(2)答:
证明:bn-bn+1=[an√(n+1)-an+1√n]/√(n^2+n)
=[an√(n+1)-(an√n+√n/an)]/√(n^2+n)
[an√(n+1)]^2=an^2*n+an^2>an^2*n+2n+1
(an√n+√n/an)^2=an^2*n+2n+n/an^2
=an^2*n+2n+n/2n+1<an^2*n+2n+1
即[an√(n+1)]^2>(an√n+√n/an)^2
又因为an√(n+1)>0,(an√n+√n/an)>0
故an√(n+1)>an√n+√n/an
即bn-bn+1=[an√(n+1)-(an√n+√n/an)]/√(n^2+n)>0
即bn>bn+1。
收起