关于一道判断是否拐点高数如图所示
判断极值与拐点的高阶充分条件:(以表示上标,即n阶导数)
设 f'(x0)=f''(x0)=f'''(x0)=。。。=f(x0)=0,但 f(x0)≠0。 则
当n是偶数时,f(x0)是极值; 当n是奇数时,f(x0)不是极值。
当n是偶数时,点(x0,f(x0)不是曲线 y=f(x) 的拐点;
当n是奇数时,点(x0,f(x0)是曲线 y=f(x) 的拐点。
即第一个不为零的高阶导数的阶数为奇数时,曲线有拐点;为偶数时,曲线无拐点。
本题f'(0)=f''(0)=f'''(0)=f(0)=0, f(0)≠0, n=5, 是奇数,
且f(x)连续,则f(0)不是极值,点(0,f(0...全部
判断极值与拐点的高阶充分条件:(以表示上标,即n阶导数)
设 f'(x0)=f''(x0)=f'''(x0)=。。。=f(x0)=0,但 f(x0)≠0。 则
当n是偶数时,f(x0)是极值; 当n是奇数时,f(x0)不是极值。
当n是偶数时,点(x0,f(x0)不是曲线 y=f(x) 的拐点;
当n是奇数时,点(x0,f(x0)是曲线 y=f(x) 的拐点。
即第一个不为零的高阶导数的阶数为奇数时,曲线有拐点;为偶数时,曲线无拐点。
本题f'(0)=f''(0)=f'''(0)=f(0)=0, f(0)≠0, n=5, 是奇数,
且f(x)连续,则f(0)不是极值,点(0,f(0))是曲线 y=f(x) 的拐点。
收起