抛物线的性质
面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线。 定点F叫做抛物线的焦点。 定直线l 叫做抛物线的准线。 新授内容 一,抛物线的范围: y2=2px y取全体实数 X Y X 0 二,抛物线的对称性 y2=2px 关于X轴对称 没有对称中心,因此,抛物线又叫做无心圆锥曲线。 而椭圆和双曲线又叫做有心圆锥曲线 X Y 新授内容 定义 :抛物线与对称轴的交点,叫做抛物线的顶点 只有一个顶点 X Y 新授内容 三,抛物线的顶点 y2=2px 所有的抛物线的离心率都是 1 X Y 新授内容 四,抛物线的离心率 y2=2px 基本点:顶点,焦点 基本线:准线,对称轴 基本量:P(...全部
面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线。 定点F叫做抛物线的焦点。 定直线l 叫做抛物线的准线。 新授内容 一,抛物线的范围: y2=2px y取全体实数 X Y X 0 二,抛物线的对称性 y2=2px 关于X轴对称 没有对称中心,因此,抛物线又叫做无心圆锥曲线。
而椭圆和双曲线又叫做有心圆锥曲线 X Y 新授内容 定义 :抛物线与对称轴的交点,叫做抛物线的顶点 只有一个顶点 X Y 新授内容 三,抛物线的顶点 y2=2px 所有的抛物线的离心率都是 1 X Y 新授内容 四,抛物线的离心率 y2=2px 基本点:顶点,焦点 基本线:准线,对称轴 基本量:P(决定抛物线开口大小) X Y 新授内容 五,抛物线的基本元素 y2=2px X,x轴正半轴,向右 -X,x轴负半轴,向左 y,y轴正半轴,向上 -y,y轴负半轴,向下 新授内容 六,抛物线开口方向的判断 例。
过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切。 分析:运用抛物线的定义和平面几何知识来证比较简捷。 证明:如图。 所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切。
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C, 则|AF|=|AD|,|BF|=|BC| ∴|AB|=|AF| |BF| =|AD| |BC|=2|EH| 求满足下列条件的抛物线的方程 (1)顶点在原点,焦点是(0,-4) (2)顶点在原点,准线是x=4 (3)焦点是F(0,5),准线是y=-5 (4)顶点在原点,焦点在x轴上, 过点A(-2,4) 练习 小 结 : 1,抛物线的定义,标准方程类型与图象的对应 关系以及判断方法 2,抛物线的定义,标准方程和它 的焦点,准线,方程 3,注重数形结合的思想。
收起