已知a,b,c都为正数,求证:a
利用均值法证明:
因为a,b,c都为正数,所以[(a的三次方/bc)+(b的三次方/ca)]/2 ≥ 根
号[(a的三次方/bc)*(b的三次方/ca)],去掉根号得
[(a的三次方/bc)+(b的三次方/ca)]/2 ≥ ab/c ---1式
同理可得[(b的三次方/ac)+(c的三次方/ab)]/2 ≥ bc/a ---2式
[(a的三次方/bc)+(c的三次方/ab)]/2 ≥ ac/b ---3式
把1式,2式,3式相加得
(a的三次方/bc)+(b的三次方/ca)+(c的三次方/ab) ≥
(ab/c) + (bc/a) +(ac/b) , ...全部
利用均值法证明:
因为a,b,c都为正数,所以[(a的三次方/bc)+(b的三次方/ca)]/2 ≥ 根
号[(a的三次方/bc)*(b的三次方/ca)],去掉根号得
[(a的三次方/bc)+(b的三次方/ca)]/2 ≥ ab/c ---1式
同理可得[(b的三次方/ac)+(c的三次方/ab)]/2 ≥ bc/a ---2式
[(a的三次方/bc)+(c的三次方/ab)]/2 ≥ ac/b ---3式
把1式,2式,3式相加得
(a的三次方/bc)+(b的三次方/ca)+(c的三次方/ab) ≥
(ab/c) + (bc/a) +(ac/b) , 又
因为 [(ab/c) + (bc/a)] ≥ 根号 2*[(ab/c) * (bc/a)],再去掉根号得
(ab/c) + (bc/a) ≥ 2b ---4式
同理可得 (bc/a) +(ac/b) ≥ 2c ---5式
(ab/c) + (ac/b) ≥ 2a ---6式
再把4式,5式,6式相加得2*[(ab/c) + (bc/a) +(ac/b)] ≥ 2(a+b+c)
即(ab/c) + (bc/a) +(ac/b) ≥ a + b + c
又因为(a的三次方/bc)+(b的三次方/ca)+(c的三次方/ab) ≥ (ab/c)
+ (bc/a) +(ac/b) ,
所以(a的三次方/bc)+(b的三次方/ca)+(c的三次方/ab)≥a+b+c
所以原题得证。
证毕!。收起