急!!!!!高一数学向量题已知向量a,
向量a,b,c两两所成的夹角相等:
(1)。 向量a,b,c共线
向量a+b+c的长度|a+b+c|=|a|+|b|+|c|=1+2+3=6,
a,b,c两两所成的夹角都为0°,→a+b+c与三已知向量的夹角为0°
(2)向量a,b,c不共线,则两两所成的夹角相等=120°
向量a+b+c的长度|a+b+c|:
|a+b+c|平方=(a+b+c)平方=a^2+b^2+c^2+2ab+2ac+2bc=
1^2+2^2+3^2+2*1*2*cos120°+2*1*3*cos120+2*2*3*cos120=
1+4+9-2-3-6=3,→向量a+b+c的长度|a+b+c|=√3
向量a+b+...全部
向量a,b,c两两所成的夹角相等:
(1)。
向量a,b,c共线
向量a+b+c的长度|a+b+c|=|a|+|b|+|c|=1+2+3=6,
a,b,c两两所成的夹角都为0°,→a+b+c与三已知向量的夹角为0°
(2)向量a,b,c不共线,则两两所成的夹角相等=120°
向量a+b+c的长度|a+b+c|:
|a+b+c|平方=(a+b+c)平方=a^2+b^2+c^2+2ab+2ac+2bc=
1^2+2^2+3^2+2*1*2*cos120°+2*1*3*cos120+2*2*3*cos120=
1+4+9-2-3-6=3,→向量a+b+c的长度|a+b+c|=√3
向量a+b+c与a的夹角α
cosα=(a+b+c)*a/|a+b+c|*|a|
=(a*a+a*b+a*c)/√3*1=(1+1*2*cos120°+1*3*cos120°)/√3
=(1-1-3/2)=(-3/2)/√3=-√3/2,α=150°
向量a+b+c与b的夹角β
cosβ=(a+b+c)*b/|a+b+c|*|b|
=(a*b+b*b+b*c)/√3*2=(1*2*cos120°+2^2+2*3*cos120°)/√3
=(-1+4-3)=0/√3=0,β=90°
向量a+b+c与c的夹角γ
cosγ=(a+b+c)*c/|a+b+c|*|c|
=(a*c+b*c+c*c)/√3*3=(1*3*cos120°+2*3*cos120°+3^2)/√3*3
=(-3/2-3+9)=(9/2)/3√3=√3/2,α=30°
。收起