初二数学(33)
已知对于正整数n,有{1/[(n+1)(√n)+n√(n+1)]}
=[1/(√n)]- [1/√(n+1)],若某个正整数k满足{1/[2(√1)+(√2)]}+ {1/[3(√2)+2(√3)]}+ {1/[4(√3)+3(√4)]}+ …+{1/[(k+1)(√k)+ k(√(k+1))]}=2/3,则k等于多少?
解:
{1/[(n+1)(√n)+n√(n+1)]}
=[(n+1)(√n)-n√(n+1)]}/[(n+1)(√n)+n√(n+1)]}×[(n+1)(√n)-n√(n+1)]}
=[(n+1)(√n)-n√(n+1)]}/[n(n+1)^-(n+1)n^]
=[(n+...全部
已知对于正整数n,有{1/[(n+1)(√n)+n√(n+1)]}
=[1/(√n)]- [1/√(n+1)],若某个正整数k满足{1/[2(√1)+(√2)]}+ {1/[3(√2)+2(√3)]}+ {1/[4(√3)+3(√4)]}+ …+{1/[(k+1)(√k)+ k(√(k+1))]}=2/3,则k等于多少?
解:
{1/[(n+1)(√n)+n√(n+1)]}
=[(n+1)(√n)-n√(n+1)]}/[(n+1)(√n)+n√(n+1)]}×[(n+1)(√n)-n√(n+1)]}
=[(n+1)(√n)-n√(n+1)]}/[n(n+1)^-(n+1)n^]
=[(n+1)(√n)-n√(n+1)]}/n(n+1)
=[1/(√n)]- [1/√(n+1)]
{1/[2(√1)+(√2)]}+ {1/[3(√2)+2(√3)]}+ {1/[4(√3)+3(√4)]}+ …+{1/[(k+1)(√k)+ k(√(k+1))]}=2/3
{1/[2(√1)+(√2)]}+ {1/[3(√2)+2(√3)]}+ {1/[4(√3)+3(√4)]}+ …+{1/[(k+1)(√k)+ k(√(k+1))]}
=[(1/√1)-1/√2]+[(1/√2)-1/√3]+[(1/√3)+1/√4]
+。
。。。。。+[1/√(k-1)+1/√k]+[(1/√k)-1/√(k+1)]
=1-[1/√(k+1)]=2/3
1/√(k+1)=1/3
√(k+1)=3
k+1=9
k=8
。
收起