数学函数定义域值域区间减函数问题
1。解 因为sin(2x-π/4)>=0 2kπ2kπ+π/4kπ+π/8<=x<=kπ+5π/8,(k∈Z)。
所以,定义域为[kπ+π/8,kπ+5π/8](k∈Z)。
2。解 令3x/2+π/3=X,
因为sinX的减区间为[2kπ-π/2,2kπ+π/2],
所以使sinX为减函数的范围是2kπ-π/2<=X<=2kπ+π/2,
于是2kπ-π/2<=3x/2+π/3<=2kπ+π/2
即4kπ/3-5π/9<=x<=4kπ/9+π/9,(k∈Z)。
因此,函数y=(1/3)sin(3x/2+π/3)的减区间为:
[4kπ/3-5π/9,4kπ/9+π/9],(k∈Z)。
。全部
1。解 因为sin(2x-π/4)>=0 2kπ2kπ+π/4kπ+π/8<=x<=kπ+5π/8,(k∈Z)。
所以,定义域为[kπ+π/8,kπ+5π/8](k∈Z)。
2。解 令3x/2+π/3=X,
因为sinX的减区间为[2kπ-π/2,2kπ+π/2],
所以使sinX为减函数的范围是2kπ-π/2<=X<=2kπ+π/2,
于是2kπ-π/2<=3x/2+π/3<=2kπ+π/2
即4kπ/3-5π/9<=x<=4kπ/9+π/9,(k∈Z)。
因此,函数y=(1/3)sin(3x/2+π/3)的减区间为:
[4kπ/3-5π/9,4kπ/9+π/9],(k∈Z)。
。收起