请问三角形的中心、重心、垂心、外心、内心
重心:三角形顶点与对边中点的连线交于一点,称为三角形重心;
垂心:三角形各边上的高交于一点,称为三角形垂心;
外心:三角形各边上的垂直平分线交于一点,称为三角形外心;
内心:三角形三内角平分线交于一点,称为三角形内心;
中心:正三角形的重心、垂心、外心、内心重合,称为正三角形的中心。
三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,
五心性质很重要,认真掌握莫记混.
重 心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂 心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角...全部
重心:三角形顶点与对边中点的连线交于一点,称为三角形重心;
垂心:三角形各边上的高交于一点,称为三角形垂心;
外心:三角形各边上的垂直平分线交于一点,称为三角形外心;
内心:三角形三内角平分线交于一点,称为三角形内心;
中心:正三角形的重心、垂心、外心、内心重合,称为正三角形的中心。
三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,
五心性质很重要,认真掌握莫记混.
重 心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂 心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清。
内 心
三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.
外 心
三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
按照这个自行画画图,对照上面别人的解释体会一下。
。收起