搜索
首页 教育/科学 学习帮助

a,b,c为三角形abc的三条边长 关于x的方程 (b c)x^2 √2(a-c)x-3/4(a-c)=0有两个相等的实数根

a,b,c为三角形abc的三条边长 关于x的方程 (b+c)x^2+√2(a-c)x-3/4(a-c)=0有两个相等的实数根 且a,b,c满足a-5b+2c=0 1.求证 三角形ABC是等腰三角形 2. 求 a:b:c 的值

全部回答

2005-08-11

0 0
依题,有两个相等实根△=[√2(a-c)]^2+4(b+c)*3/4(a-c)=0 整理得:(a-c)(4a+3b-c)=0 ∵a,b,c为三角形的三条边 ∴a+b>c ∴4a+3b>a+b>c 即4a+3b-c≠0 ∴a-c=0 ∴a=c   (即三角形ABC是等腰三角形) ∵a-5b+2c=0 ∴3c=5b ∴a:b:c=5:3:5

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
学习帮助
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
K12
学习帮助
学习帮助
举报
举报原因(必选):
取消确定举报