搜索
首页 教育/科学 升学入学 考研

关于考研时的数学

经济类学生考研时需要考哪几门数学?线性代数要考吗?微积分呢?概率论呢?还有其他的吗?以上三门都要考吗?

全部回答

2008-01-24

0 0
    经济学属于12个学科门类中的一个,下分理论经济学和应用经济学两个一级学科,再往下分是专业。 理论经济学(代码0201)一般是考数学四,极个别文科学校的个别专业甚至不考数学。
  应用经济学(代码0202)对数学要求较高,所以一般会考四种数学里第二难的数学三。 先介绍一下最新版考研对应教材,注意是“对应”,考研并没有“指定”教材。     《高等数学》(同济五版,六版刚出,要等到第一批学六版的学生考研时才会以这套教材为准),《线性代数》(同济四版),《概率论及数理统计》(浙大三版)。
   微积分应该用高数教材,而不是用文科数学教材。 数学三的考试范围: 《微积分》(82分),《线性代数》考前五章(34分),《概率论及数理统计》考到第八章第5节(34分)。

2008-01-26

83 0
    登录“中国研究生招生信息网”主页( )查阅“2008硕士研究生专业目录”,可以了解到报考信息 数三的考试范围比数四大些,难度上都差不多,具体可以参考考试大纲。另外,重点不同: 数一:高等数学占60%,线性代数20%,概率论20% 数二:不考无穷级数、线面积分、概率统计 数三和数四好像一个概率论占大头一个线性代数占大头, 这是以前的考试大纲,每年改动比较小,这个作为参考,具体复习还要以最新的考试大纲为准 数学三的大纲 数学四的考试大纲 数学四考试大纲 [考试科目] 微积分、线性代数、概率论 微积分 一、函数、极限、连续 考试内容 函数的概念及其表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数、隐函数、分段函数基本初等函数的性质及其图形初等函数数列极限与函数极限的概念函数的左极限和右极限无穷小和无穷大的概念及其关系无穷小的基本性质及阶的比较极限四则运算两个重要极限函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法。
     2.了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4.掌握基本初等函数的性质及其图形,理解初等函数的概念。 5。
   会建立简单应用问题中的函数关系式。 6.了解数列极限和函数极限(包括左、右极限)的概念。   7。 了叔无穷小的概念和其基本性质掌握无穷小的阶的比较方法,了解无穷大的概念及其与无穷小的关系。
   8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹逼定理),掌握极限四则运算法则,会应用两个重要极限。 9.理解函数连续性的概念(含左连续与右连续)。   10.了解连续函数的性质和初等函数的连续性。
  了解闭区间连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、 反函数和隐函数的导数高阶导数微分的概念和运算法则罗尔 (Rolle) 定理和拉格朗日(lagrange)中值定理及其应用洛比大(L'Hospital)法则函数单调性函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值 考试要求 1。
    理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念)· 2。掌握基本初等函数的导数公式、导数的四则运算法则及复函数的求导法则;掌握反函数与隐函数求导法,了解对数求导 3.了解高阶导数的概念,会求二阶导数以及较简单函数的n阶导数。
     4.了解微分的概念,导数与微分之间的关系,以及一阶微分试的不变性;掌握微分法。 5.理解罗尔定理和拉格朗日中值定理的条件和结论,掌握这两个定理的简单应用 6.会用洛必达法则求极限。
   7.掌握函数单调性的判别方法及简单应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。   8.掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形。
   三、一元函数积分学 考试内容 原函数与不定积分的概念不定积分的基本性质基本的积分公式不定积分的换元积分法和分部积分法定积分的概念和基本性质积分中值定理变上限积分定义的函数及其导数牛顿一莱布尼茨(NewtOn一Deibniz)公式定积分的换元积分法和分部积分法广义积分的概念及计算定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质、基本积分公式;掌握计算不定积分的换元积分法和分部积分法。
     2.了解定积分的概念和基本性质;掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法;会求变上限积分的导数。 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。
   4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。   四、多元函数微积分学 考试内容 多元函数的概念二元函数的几何意义二元函数的极限与连续性有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法隐函数求导法高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值。
  二重积分的概念、基本性质和计算无界区域上的简单二重积分的计算 考试要求 1。  了解多元函数的概念,了解二元函数的表示法与几何意义。 2。了解二元函数的极限与连续的直观意义。
   3。了解多元函数的偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法;会用隐函数的求导法则。 4。了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值。
    会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最J、值,并会求解一些简单的应用题。 5。了解二重积分的概念与基本性质,会计算较简单的二重积分(含利用极坐标进行计算);会计算无界区域上较简单的二重积分。
   线性代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则 考试要求 1.理解N阶行列式的概念。   2.掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。
   3.会用克莱姆法则解线性方程组。 二、矩阵 考试内容 矩阵的概念单位矩阵、对角矩阵、数量矩阵、三角矩阵和对称矩阵、矩阵的和数与矩阵的积、 矩阵与矩阵的积、 矩阵的转置、逆矩阵的概念和性质、矩阵的伴随矩阵、矩阵的初等变换、初等矩阵、分块矩阵及其运算矩阵的秩 考试要求 1.理解矩阵的概念,了解几种特殊矩阵的定义和性质。
     2.掌握矩阵的加法、数乘和乘法以及它们的运算法则;掌握矩阵转置的性质;掌握方阵乘积的行列式的性质。 3.理解逆矩阵的概念,掌握逆矩阵的性质。会用伴随矩阵求矩阵的逆。
   4.了解矩阵的初等变换和初等矩阵的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。   5.了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、向量 考试内容 向量的概念向量的和数与向量的积向量的线性组合与线性表示向量组线性相关与线性无关的概念、性质和判别法向量组的极大线性无关组向量组的秩 考试要求 1。
  了解向量的概念。掌握向量的加法和数乘的运算法则。   2。人理解向量的线性组合与线性表示、向量组线性相关、线性元关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。
   3.理解向量组的极大无关组的概念,掌握求向量组的极大无夫组的方法。 4.理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。   四、线性方程组 考试内容 线性方程组的解线性方程组有解和尤解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.理解线性方程组解的概念,掌握线性方程组有解和无解的判定方法。
     2.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 3.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。
   五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念相似矩阵矩阵的相似对角矩阵实对称矩阵的特征值和特征向量 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质。
    掌握求矩阵的特征值和特征向量的方法。 2.理解矩阵相似的概念,掌握相似矩阵的性质;了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法。 3.了解实对称矩阵的特征值和特征向量的性质。
   概率论 一、随机事件和概率 考试内容 随机事件与样本空间事件的关系事件的运算及其性质事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率加法公式乘法公式全概率公式和贝叶斯(BAYES) 公式独立重复试验 考试要求 1.了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。
     2.理解概率、条件率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、剩法公式,以及全概率公式、贝叶斯公式。 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
   二、随机变量及及其概率分布 考试内容 随机变量及其概率分布随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的概率分布二维随机变量及其联合(概率)分布二维离散型随机变量的联合概率分布和边缘分布二维连续型随机变量的联合概率密度和边缘密度随机变量的独立性常见二维随机变量的联合分布随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x} 的概念及性质;会计算与随机变量相关的事件的概率。
     2。 理解离散型随机变量及其概率分布的概念;掌握0一1分布、二项分布、超几何分布、泊松(Poison)分布及其应用。 3.理解连续型随机变量及其概率密度的概念;掌握概率密度与分布函数之间的关系;掌握均匀分布、指数分布分布及其应用 4.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布、连续型联合概率密度和边缘密度;会利用二维概率分布求有关事件的概率。
     5.理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。 6。 掌握二维均匀分布,了解二维正态分布的密度函数,理解其中参数的概率意义。 7.掌握根据自变量的概率分布求其较简单函数的概率分布的基本方法。
   三、随机变量的数字特征 考试内容 随机变量的数学期望、方差、标准差以及它们的基本性质随机变量函数的数学期望二随机变量的协方差及其性质二随机变量的相关系数及其性质 考试要求 1.理解随机变量数字特征(期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征 2.会根据随机变量调的概率分布求其函数G(X)的数学期望Eg(X)。
     四、中心极限定理 考试内容 泊松(POISSON)定理列莫弗一拉普拉斯(DEMOIVRE)(Laplace)定理、二项分布以正态分布为极限分布)列维一林德伯格(Levi一Lindberg)定理(独立同分布的中心极限定理) 考试要求 1.掌握泊松定理的结论和应用条件,并会用泊松分布近似计算二项分布的概率。
     2.了解列莫弗~拉普拉斯中心极限定理,列维一林德伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。 [试卷结构] (一)内容比例 微积分约50% 线性代数约25% 概率论约25% (二)题型比例 填空与选择题约30% 解答题(包括证明题)约70% 。
    。

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
考研
出国/留学
院校信息
人文学科
职业教育
升学入学
理工学科
外语学习
学习帮助
K12
升学入学
考研
中考
小学教育
高考
考研
考研
举报
举报原因(必选):
取消确定举报