是从什么时候开始用π表示圆周率的呢?
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率。1600年,英国威廉。奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π。 1706年英国的琼斯首先使用π。1737年欧拉在其著作中使用π。后来被数学家广泛接受,一直没用至今。
π是一个非常重要的常数。一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志。 "古今中外很多数学家都孜孜不倦地寻求过π值的计算方法。
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法。他用圆...全部
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率。1600年,英国威廉。奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π。
1706年英国的琼斯首先使用π。1737年欧拉在其著作中使用π。后来被数学家广泛接受,一直没用至今。
π是一个非常重要的常数。一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志。
"古今中外很多数学家都孜孜不倦地寻求过π值的计算方法。
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法。他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π
会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3。
1416。
公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点。刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切"。利用圆面积不等式推出结果,起到了事半功倍的效果。
而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3。1415926<π<3。1415927。可惜,祖冲之的计算方法后来失传了。人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜。
15世纪,伊斯兰的数学家阿尔。卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录。
1579年法国韦达发现了关系式 。。。首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式。
1650年瓦里斯把π表示成元穷乘积的形式
稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单。π值的计算方法的最大突破是找到了它的反正切函数表达式。
1671年,苏格兰数学家格列哥里发现了
1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法。
1777年法国数学家蒲丰提出他的著名的投针问题。依靠它,可以用概率方法得到 的过似值。假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3。
1415926,如果取 ,则该式化简为
1794年勒让德证明了π是无理数,即不可能用两个整数的比表示。
1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根。
本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破。目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字。
人们试图从统计上获悉π的各位数字是否有某种规律。
竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休…… 点好评,祝你事事顺利。收起