平行四边形在平行四边形ABCD中,BC=2AB,CE垂直于点E,F为AD的中点,角AEF=54度,则角B=等于几度。
设BC=2a,则AB=a。 ∠B=θ,则∠A=θ
BE=2acosθ,AE=AB-BE=a-2acosθ
在△AEF中应用余弦定理有:EF^=AE^+AF^-2AE*AFcos(180-θ)
===> EF^=(a-2acosθ)^+a^+2a*(a-2acosθ)cosθ
===> EF^=a^+4a^cos^θ-4a^cosθ+a^+2a^cosθ-4a^cos^θ
===> EF^=2a^(1-cosθ)
===> EF^=2a^{1-[1-2sin^(θ/2)]}
===> EF^=4a^sin^(θ/2)
===> EF=2asin(θ/2)
又,在△AEF中应用正弦定理有:A...全部
设BC=2a,则AB=a。
∠B=θ,则∠A=θ
BE=2acosθ,AE=AB-BE=a-2acosθ
在△AEF中应用余弦定理有:EF^=AE^+AF^-2AE*AFcos(180-θ)
===> EF^=(a-2acosθ)^+a^+2a*(a-2acosθ)cosθ
===> EF^=a^+4a^cos^θ-4a^cosθ+a^+2a^cosθ-4a^cos^θ
===> EF^=2a^(1-cosθ)
===> EF^=2a^{1-[1-2sin^(θ/2)]}
===> EF^=4a^sin^(θ/2)
===> EF=2asin(θ/2)
又,在△AEF中应用正弦定理有:AF/sin54=EF/sin(180-θ)
===> a/sin54=2asin(θ/2)/sinθ
===> 1/sin54=2sin(θ/2)/[2sin(θ/2)*cos(θ/2)]
===> 1/sin54=1/cos(θ/2)
===> sin54=cos(θ/2)
===> cos(90-54)=cos(θ/2)
===> cos36=cos(θ/2)
===> θ/2=36
===> θ=72
。收起