设p为三角形ABC内一点
证明:不妨设∠A,∠B,∠C都大于30°(因为如其中有一个角度不大于30°,结论已成立了),且满足∠C≥∠A,∠C≥∠B(如不满足,可轮换∠A,∠B,∠C使∠C为最大角之一,且轮换后不会影响结论的真假)。
这样的三角形如下图所示。其中:
∠EAB=∠FCA=30°,G为AE与CF的交点。
在直角坐标系下,若A为原点,AB为x轴方向,则△ABC各点的坐标如下:
A:(0,0),B:(b,0),C:(a,h),G:(xg,yg),其中
0<a<b,0<h。
根据直线方程,不难求出G点的坐标值:
xg=√3(a^+h^)/4(a^表示a 的平方,h^表示h 的平方,下同)
yg= (a^...全部
证明:不妨设∠A,∠B,∠C都大于30°(因为如其中有一个角度不大于30°,结论已成立了),且满足∠C≥∠A,∠C≥∠B(如不满足,可轮换∠A,∠B,∠C使∠C为最大角之一,且轮换后不会影响结论的真假)。
这样的三角形如下图所示。其中:
∠EAB=∠FCA=30°,G为AE与CF的交点。
在直角坐标系下,若A为原点,AB为x轴方向,则△ABC各点的坐标如下:
A:(0,0),B:(b,0),C:(a,h),G:(xg,yg),其中
0<a<b,0<h。
根据直线方程,不难求出G点的坐标值:
xg=√3(a^+h^)/4(a^表示a 的平方,h^表示h 的平方,下同)
yg= (a^+h^)/4
令α=∠GBC
则tg(α)=(k1-k2)/(1+k1k2),其中
k1=(a^+h^)/[√3(a^+h^)-4ah]为GB的斜率
k2=h/(a-b) 为CB的斜率
令⊿=[√3(a^+h^)-4bh](a-b)+ (a^+h^)h
由k1<0,k2<0可推得0<⊿
经计算化简得
tg(α)=(1/√3){1-[(a-b/2)^+(√3b/2-h)^](4h/⊿)}≤1/√3
得α≤30°,即∠GBC≤30°
如果P点在△GAB(红色三角形)中(包括边AG),由于∠GAB=30°得
∠PAB≤30°
如果P点在△GCA(蓝色三角形)中(包括边CG),由于∠GCA=30°得
∠PCA≤30°
如果P点在△GBC(红色三角形)中(包括边BG),由于∠GBC≤30°得
∠PBC≤30°
综合上述,设P为三角形ABC内一点,则∠PAB,∠PBC,∠PCA中至少有一个角小于或等于30°。
最后谢谢国宝大熊猫4912出的好题。收起