高数求极限求x趋于无穷时1/(n+1
求x趋于无穷时1/(n+1)+1/(n+2)+。。。。。。+1/(n+n)极限
题中的x显然是n之误。改为:
lim[1/(n+1)+1/(n+2)+…+1/(n+n)]。
解 因为 1-1/2+1/3-1/4+1/5-1/6+…+1/(2n-1)-1/(2n)
=[1+1/2+1/3+…+1/(2n)]-2[1/2+1/4+1/6+…+1/(2n)]
=[1+1/2+1/3+…+1/(2n)]-[1+1/2+1/3+…+1/n]
=1/(n+1)+1/(n+2)+…+1/(n+n),
所以lim[1/(n+1)+1/(n+2)+…+1/(n+n)]
=lim[1-1/2+1/3-1/4+...全部
求x趋于无穷时1/(n+1)+1/(n+2)+。。。。。。+1/(n+n)极限
题中的x显然是n之误。改为:
lim[1/(n+1)+1/(n+2)+…+1/(n+n)]。
解 因为 1-1/2+1/3-1/4+1/5-1/6+…+1/(2n-1)-1/(2n)
=[1+1/2+1/3+…+1/(2n)]-2[1/2+1/4+1/6+…+1/(2n)]
=[1+1/2+1/3+…+1/(2n)]-[1+1/2+1/3+…+1/n]
=1/(n+1)+1/(n+2)+…+1/(n+n),
所以lim[1/(n+1)+1/(n+2)+…+1/(n+n)]
=lim[1-1/2+1/3-1/4+1/5-1/6+…+1/(2n-1)-1/(2n)]
=1-1/2+1/3-1/4+1/5-1/6+…+(-1)^(n-1)+…
=ln2。
注:
(i) 因为
1/(1+x)=1-x+x^2-x^3+…+(-1)^(n-1)x^(n-1)+…, (-11/(1+x)dx=∫[1-x+x^2-x^3+…+(-1)^(n-1)x^(n-1)+…]dx,
即
ln(1+x)=x-x^2/2+x^3/3-x^4/4++(-1)^(n-1)x^n/n+…(-1[1+1/2+1/3+…+1/n-lnn] (1)
所以γ=lim[1+1/2+1/3+…+1/(2n)-ln(2n)] (2)
(2)-(1)得
lim[1/(n+1)+1/(n+2)+…+1/(n+n)-ln(2n)+lnn]=0
即 lim[1/(n+1)+1/(n+2)+…+1/(n+n)-ln2]=0
因此 lim[1/(n+1)+1/(n+2)+…+1/(n+n)]
=lim{[1/(n+1)+1/(n+2)+…+1/(n+n)-ln2]+ln2}
=0+ln2
=ln2。
收起