搜索
首页 教育/科学 学习帮助

已知函数f(x)=x^2+mx+n的图像过点(1,3),

已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(想)的图像关于远点对称。f(-1+x)=f(-1-x),f(1)=3问题:1.f(x)与g(x)的解析式2.若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围

全部回答

2009-05-29

0 0
    1。f(x)=x^2+mx+n, ①函数f(x)=x^2+mx+n的图像过点(1,3),则3=1+m+n; ②f(-1+x)=f(-1-x),(-1+x)^2+m(-1+x)+n=(-1-x)^2+m(-1-x)+n,则(m-2)x=0,所以必有m=2,于是n=0。
     所以f(x)=x^2+2x。 函数y=g(x)与y=f(x)的图像关于原点对称:g(x)=-f(-x)=-x^2+2x。 2。F(x)=g(x)-λf(x)=-(1+λ)x^2+2(1-λ)x。
   ①当λ=-1时,F(x)显然在[-1,1]上是增函数。   ②当λ≠-1时,只要F(x)图像的顶点不在(-1,1)内。F(x)(-1,1)内增减性确定。 所以 |(1-λ)/(1+λ)|≥1,(1-λ)^2≥(1+λ)^2,λ≤0。
   由F(-1)<F(1),即 -(1+λ)-2(1-λ)<-(1+λ)+2(1-λ),得λ<1。   【结论】若F(x)=g(x)-λf(x)在[-1,1]上是增函数,实数λ的取值范围 {λ=-1}∪{λ≤0}∩{λ<1} = {λ≤0}。
   。

2009-05-28

104 0
    已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图像关于原点对称。 f(-1+x)=f(-1-x),f(1)=3 问题: 1。
  f(x)与g(x)的解析式 因为f(x)经过点(1,3),则:f(1)=1+m+n=3 所以:m+n=2……………………………………………………(1) 又,f(-1+x)=f(-1-x),则说明函数f(x)的图像关于x=-1对称,亦即x=-1为二次函数的对称轴 所以:-m/2=-1…………………………………………………(2) 联立(1)(2)得到: m=2 n=0 则,函数f(x)=x^2+2x 又,g(x)与f(x)关于原点对称,即f(x)上的点(x,y)关于原点的对称点(-x,-y)在g(x)上,所以:-y=(-x)^2+2*(-x)=x^2-2x 所以:g(x)=y=-x^2+2x 2。
    若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围 F(x)=g(x)-λf(x)=-x^2+2x-λ(x^2+2x)=-x^2+2x-λx^2-2λx =-(λ+1)x^2+2(1-λ)x ①当λ=-1时,F(x)=4x,它表示的是一次函数,且k=4>0 所以,在[-1,1]上F(x)是增函数………………………………(1) ②当λ>-1时,F(x)为二次函数,且-(λ+1)<0,开口向下 那么,对称轴x=(1-λ)/(1+λ)≥1 解得:-1≤λ≤0 所以,-1<λ≤0…………………………………………………(2) ③当λ<-1时,F(x)为二次函数,且-(λ+1)>0,开口向上 那么,对称轴x=(1-λ)/(1+λ)≤-1 解得:λ≥-1 此时无解 综上:-1≤λ≤0。
    。

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
学习帮助
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
K12
学习帮助
学习帮助
举报
举报原因(必选):
取消确定举报