什么称为实数
基本概念 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 为实数空间。实数是不可数的。实数是实分析的核心研究对象。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。 在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。 ①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a ...全部
基本概念 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 为实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。
在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。 ①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a ②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是: |a|= ①a为正数时,|a|=a ②a为0时, |a|=0 ③a为负数时,|a|=-a (任何数的绝对值都大于或等于0。
) ③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0) 历史来源 埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。
印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。
相关定义 从有理数构造实数 实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3。1, 3。14, 3。141, 3。1415,…} 所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。
这里给出其中一种,其他方法请详见实数的构造。 公理的方法 设 R 是所有实数的集合,则: 集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。 域 R 是个有序域,即存在全序关系 ≥ ,对所有实数 x, y 和 z: 若 x ≥ y 则 x z ≥ y z; 若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0。
集合 R 满足戴德金完备性,即任意 R 的非空子集 S (S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。 最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1。
5;但是不存在有理数上确界(因为 √2 不是有理数)。 实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。
编辑本段相关性质 基本运算 实数可实现的基本运算有加、减、乘、除、乘方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
完备性 作为度量空间或一致空间,实数集合是个完备空间,它有以下性质: 所有实数的柯西序列都有一个实数极限。 有理数集合就不是完备空间。例如,(1, 1。4, 1。41, 1。414, 1。4142, 1。
41421, 。。。) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化--这亦是构造实数集合的一种方法。 极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。
“完备的有序域” 实数集合通常被描述为“完备的有序域”,这可以几种解释。 首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z 1 将更大)。
所以,这里的“完备”不是完备格的意思。 另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。
)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。
这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。 “完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。
他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
高级性质 实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势。
由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的公理不相关。
所有非负实数的平方根属于 R,但这对负数不成立。这表明 R 上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于 R。这两个性质使 R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
实数集拥有一个规范的测度,即勒贝格测度。 实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1。 Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2。
超实数的集合远远大于 R,但也同样满足和 R 一样的一阶逻辑命题。满足和 R 一样的一阶逻辑命题的有序域称为 R 的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在 R 中证明要简单一些),从而确定这些命题在 R 中也成立。
拓扑性质 实数集构成一个度量空间:x 和 y 间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。
但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览: 令 a 为一实数。a 的邻域是实数集中一个包括一段含有 a 的线段的子集。
R 是可分空间。 Q 在 R 中处处稠密。 R的开集是开区间的联集。 R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。 每个R中的有界序列都有收敛子序列。 R是连通且单连通的。
R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。 编辑本段扩展与一般化 实数集可以在几种不同的方面进行扩展和一般化: 最自然的扩展可能就是复数了。复数集包含了所有多项式的根。
但是,复数集不是一个有序域。 实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。 有时候,形式元素 ∞ 和 -∞ 加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。
希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。收起