数学问题:在△ABC中,若(si
在△ABC中,若(sinA+sinB)/(cosA+cosB)=sinC,试判定△ABC的形状。
解法1 (sinA+sinB)/(cosA+cosB)=sinC
sinA+sinB=sin(A+B)(cosA+cosB)
sinA+sinB=(sinAcosB+cosAsinB)(cosA+cosB)
sinA+sinB=sinAcosAcosB+sinA(cosB)^2+(cosA)^2sinB)+cosAcosBsinB
sinA[1-(cosB)^2]+sinB[1-(cosA)^2]=(sinA+sinB)cosAcosB
sinA(sinB)^2+sinB(sinA)^2=(s...全部
在△ABC中,若(sinA+sinB)/(cosA+cosB)=sinC,试判定△ABC的形状。
解法1 (sinA+sinB)/(cosA+cosB)=sinC
sinA+sinB=sin(A+B)(cosA+cosB)
sinA+sinB=(sinAcosB+cosAsinB)(cosA+cosB)
sinA+sinB=sinAcosAcosB+sinA(cosB)^2+(cosA)^2sinB)+cosAcosBsinB
sinA[1-(cosB)^2]+sinB[1-(cosA)^2]=(sinA+sinB)cosAcosB
sinA(sinB)^2+sinB(sinA)^2=(sinA+sinB)cosAcosB
sinAsinB(sinA+sinB)=(sinA+sinB)cosAcosB
sinAsinB=cosAcosB
cosAcosB-sinAsinB=0
cos(A+B)=0
cosC=0
C=90º
所以△ABC是直角三角形。
解法2 (转化为边的关系)由正弦定理和余弦定理得
(sinA+sinB)/(cosA+cosB)=sinC
sinA+sinB=sinC(cosA+cosB)
a+b=c[(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)]
2ab(a+b)=a(b^2+c^2-a^2)+b(c^2+a^2-b^2)
ab(a+b)=(a+b)c^2-(a^3+b^3)
ab(a+b)=(a+b)[c^2-(a^2-ab+b^2)]
a^2+b^2=c^2
所以△ABC是直角三角形。
收起