一元三次方程的判别式一元三次方程:ax
我不太懂,上网查了一下。详情请见
仅作参考。
三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。
(有的数学爱好者把以下公式称作范氏公式,虽然是正确的,但作者认为:全世界姓范的人有成千上万,科学的继续发现与创新,还会有范氏人研究出各类公式,为了方便运用,严谨起见,称作盛金公式较为准确。 )
盛金公式
Shengjin’s Formulas
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且...全部
我不太懂,上网查了一下。详情请见
仅作参考。
三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。
(有的数学爱好者把以下公式称作范氏公式,虽然是正确的,但作者认为:全世界姓范的人有成千上万,科学的继续发现与创新,还会有范氏人研究出各类公式,为了方便运用,严谨起见,称作盛金公式较为准确。
)
盛金公式
Shengjin’s Formulas
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:
A=b^2-3ac;
B=bc-9ad;
C=c^2-3bd,
总判别式:
Δ=B^2-4AC。
当A=B=0时,盛金公式①(When A=B=0,Shengjin’s Formula①):
X1=X2=X3=-b/(3a)=-c/b=-3d/c。
当Δ=B^2-4AC>0时,盛金公式②(WhenΔ=B^2-4AC>0,Shengjin’s Formula②):
X1=(-b-(Y1^1/3+Y2^1/3))/(3a);
X2,3=(-2b+Y1^1/3+Y2^1/3±√3* (Y1^1/3-Y2^1/3)i)/(6a);
其中Y1,2=Ab+3a (-B±√(B^2-4AC))/2,i=-1。
当Δ=B^2-4AC=0时,盛金公式③(WhenΔ=B^2-4AC =0,Shengjin’s Formula③):
X1=-b/a+K;X2=X3=-K/2,
其中K=B/A,(A≠0)。
当Δ=B^2-4AC0,-10时,方程有一个实根和一对共轭虚根;
③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根;
④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。
盛金定理
Shengjin’s Theorems
当b=0,c=0时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A≤0时,盛金公式④无意义;当T<-1或T>1时,盛金公式④无意义。
当b=0,c=0时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A≤0的值?盛金公式④是否存在T<-1或T>1的值?盛金定理给出如下回答:
盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。
盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式①解题)。
盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。
盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式②解题)。
盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式②解题)。
盛金定理6:当Δ=0时,若B=0,则必定有A=0(此时,适用盛金公式①解题)。
盛金定理7:当Δ=0时,若B≠0,盛金公式③一定不存在A≤0的值(此时,适用盛金公式③解题)。
盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。
盛金定理9:当Δ<0时,盛金公式④是一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。
显然,当A≤0时,都有相应的盛金公式解题。
注意:盛金定理逆之不一定成立。如:当Δ>0时,不一定有A<0。
盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。
。收起