紧急求:小学六年级圆的复习课教案和课件
圆的复习课教案
-、学习内容
有关点、直线、圆和圆的位置关系的复习。
二、学习目标
1、了解点和圆、直线和圆、圆和圆的几种位置关系 。
2、进一步理解各种位置关系中,d与R、r数量关系。
3、训练探究能力、识图能力、推理判断能力。
4、丰富对现实空间及图形的认识,发展形象思维,并能解决简单问题。
三、学习重点
切线的判定,两圆外切、内切与两圆圆心距d、半径R、r和的数量关系的联系。
四、学习难点
各知识点之间的联系及灵活应用。
五、学习活动概要
问题情景引入――基础知识重温――综合知识应用
六、学习过程
(一)、图片引入,生活中的圆。
(二)、点与圆的位置关系
1、问题...全部
圆的复习课教案
-、学习内容
有关点、直线、圆和圆的位置关系的复习。
二、学习目标
1、了解点和圆、直线和圆、圆和圆的几种位置关系 。
2、进一步理解各种位置关系中,d与R、r数量关系。
3、训练探究能力、识图能力、推理判断能力。
4、丰富对现实空间及图形的认识,发展形象思维,并能解决简单问题。
三、学习重点
切线的判定,两圆外切、内切与两圆圆心距d、半径R、r和的数量关系的联系。
四、学习难点
各知识点之间的联系及灵活应用。
五、学习活动概要
问题情景引入――基础知识重温――综合知识应用
六、学习过程
(一)、图片引入,生活中的圆。
(二)、点与圆的位置关系
1、问题引入:点和圆的位置关系有哪几种?怎样判定。
复习点和圆的位置关系,点到圆心的距离d与半径r的数量关系与三种位置关系的联系。
2、练习反馈
如图,已知矩形ABCD的边AB=3厘米,AD=4厘米。
(1) 以点A为圆心、4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
(2) 若以A点为圆心作圆A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是什么?
(三)、直线和圆的位置关系
1、知识回顾:直线和圆的三种位置关系及交点,三种位置关系与圆心到直线的距离d与半径r的数量关系间的联系。
2、分组活动:全班分为三组,各代表相交、相切、相离。当出示的问题是圆与直线的位置关系是哪组代表的,那组的同学起立,看那组同学反应最快。
已知⊙O的半径是5,根据下列条件,判断⊙O与直线L的位置关系。
(1)圆心O到直线L的距离是4
(2)圆心O到直线L的垂线段的长度是5
(3)圆心O到直线L 的距离是6
(4)圆心O到直线L上的一点A的距离是4
(5)(圆心O到直线L上的一点B的距离是5
(6)圆心O到直线L上的一点C的距离是6
3、要点知识重温:圆的切线
出示图形,同学们重温切线的有关性质及判定。
4、知识应用
1)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线。
2)、在以点O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD是圆的线。
(四)圆与圆的位置关系
1、生活中处处有数学。列举反应圆和圆的位置关系的实例,以投篮为例。
2、知识回顾:
1)圆和圆的五种位置关系
2)两圆外切、内切时,圆心距d与半径R、r的位置关系。
3、抢答
1)两圆圆心距为4㎝,两圆半径分别是1㎝、3㎝,则两圆位置关系是----
2)两圆外切,半径分别是1㎝、3㎝,则圆心距为――
3)两圆半径分别是1㎝、3㎝,圆心距是2㎝,则两圆位置关系是――
4)两圆相切,半径分别是3㎝、1㎝,则圆心距是――
5)两圆内切,圆心距为4㎝,一圆半径是5㎝,则另一圆的半径是――
4、活动与探究
已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径都是R,求⊙O3的半径。
。收起