已知数列{an}满足a1=1,a(n+1)=2an+1
a1=1======================>a1+1=2(2¹)
a2=2a1+1=3================>a2+1=4(2²)
a3=2a2+1=7================>a3+1=8(2³)
。 。。。。。
a(n)=2a(n-1)+1========>a(n)+1=2a(n-1)+2=2ˆ(n)------①
a(n+1)=2an+1=2a(n)+1==>a(n+1)+1=2a(n)+2=2ˆ(n+1)----②
a(n+2)=2a(n+1)+1=2×[2a(n)+1]+1=4a(n)+3====>
...全部
a1=1======================>a1+1=2(2¹)
a2=2a1+1=3================>a2+1=4(2²)
a3=2a2+1=7================>a3+1=8(2³)
。
。。。。。
a(n)=2a(n-1)+1========>a(n)+1=2a(n-1)+2=2ˆ(n)------①
a(n+1)=2an+1=2a(n)+1==>a(n+1)+1=2a(n)+2=2ˆ(n+1)----②
a(n+2)=2a(n+1)+1=2×[2a(n)+1]+1=4a(n)+3====>
------------------------a(n+2)+1=4a(n)+4=2ˆ(n+2)----③
②平方得:[2ˆ(n)×2¹]²=2ˆ(2n)×2²
①×③得:[2ˆ(n)]×[2ˆ(n)×2²]=2ˆ(2n)×2²
∴数列﹛a(n)+1﹜符合:中间项的平方=两外项之乘积,
∴数列﹛a(n)+1﹜是首项为2,2为公比的等比数列
其通项公式是:a(n)+1=2[a(n)+1]=2ˆ(n)
其前n项的和是:Sn=2¹+2²+2³+。
。。+2ˆ(n)。收起