一个代数半对称不等式对任意正实数
对任意正实数x,y,z和常数m,n,存在参数k1,k2,使下列不等式:
k1*[x/(x+y+z)]^m+k2*[(x+y+z)/x]^n>=k1/3^m+k2*3^n
成立。
(1),试证(m,n)=(2,1),(k1,k2)=(3,2/9);
(2),试证(m,n)=(3,1),(k1,k2)=(27,1);
(3),请再找出一组(m,n),(k1,k2),并证明。
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
(1) 当(m,n)=(2,1),(k1,k2)=(3,2/9),不等式为
3*[x/(x+...全部
对任意正实数x,y,z和常数m,n,存在参数k1,k2,使下列不等式:
k1*[x/(x+y+z)]^m+k2*[(x+y+z)/x]^n>=k1/3^m+k2*3^n
成立。
(1),试证(m,n)=(2,1),(k1,k2)=(3,2/9);
(2),试证(m,n)=(3,1),(k1,k2)=(27,1);
(3),请再找出一组(m,n),(k1,k2),并证明。
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
(1) 当(m,n)=(2,1),(k1,k2)=(3,2/9),不等式为
3*[x/(x+y+z)]^2+2*(x+y+z)/(9x)>=1
27x^3+2*(x+y+z)^3-9x(x+y+z)^2>=0
20x^3-12x^2(y+z)-3x(y+z)^2+2(y+z)^3>=0
令t=2x/(y+z),则上式转化为:
5t^3-6t^2-3t+4>=0
(5t+4)*(t-1)^2>=0,显然成立,当2x=y+z时取等号。
(2) 当(m,n)=(3,1),(k1,k2)=(27,1),不等式为
27*[x/(x+y+z)]^3+(x+y+z)/x>=4
27x^4+(x+y+z)^4-4x(x+y+z)^3>=0
24x^4-8x^3(y+z)-6x^2(y+z)^2+(y+z)^4>=0
令t=2x/(y+z),则上式转化为:
3t^4-2t^3-3t^2+2>=0
(3t^2+4t+2)*(t-1)^2>=0, 显然成立,当2x=y+z时取等号。
(3) 取(m,n)=(2,2),运用待定系数法可确定唯一的(k1,k2)=(81,1),即
81[x/(x+y+z)]^2+[(x+y+z)/x]^2>=18
81x^4+(x+y+z)^4-18x^2(x+y+z)^2>=0,
64x^4-32x^3(y+z)-12x^2(y+z)^2+4x(y+z)^3+(y+z)^4>=0
令t=2x/(y+z),则上式转化为:
4t^4-4t^3-3t^2+2t+1>=0
(2t+1)^2*(t-1)^2>=0,显然成立,当2x=y+z时取等号。
备注:运用待定系数法较繁,略。当(m,n)确定后,(k1,k2)是唯一的,这里不作证明。当(m,n)数值较大或是分数是很难求,也许要借助机器证明软件。
。收起