求1/2+1/2²+1/2&s
S=1/2+1/4+1/8+1/16+……+1/2^n。
用小学四年级的方法:
S+1/2^n
=[1/2+1/4+1/8+1/16+……+1/2^(n-2)+1/2^(n-1)+1/2^n]+1/2^n
=1/2+1/4+1/8+1/16+……+1/2^(n-2)+1/2^(n-1)+[1/2^n+1/2^n]
=1/2+1/4+1/8+1/16+……1/2^(n-2)+1/2^(n-1)+1/2^(n-1)
=1/2+1/4+1/8+1/16+……1/2^(n-2)+[1/2^(n-1)+1/2^(n-1)]
=1/2+1/4+1/8+1/16+……+1/2^(n-2)+1/2^(n-...全部
S=1/2+1/4+1/8+1/16+……+1/2^n。
用小学四年级的方法:
S+1/2^n
=[1/2+1/4+1/8+1/16+……+1/2^(n-2)+1/2^(n-1)+1/2^n]+1/2^n
=1/2+1/4+1/8+1/16+……+1/2^(n-2)+1/2^(n-1)+[1/2^n+1/2^n]
=1/2+1/4+1/8+1/16+……1/2^(n-2)+1/2^(n-1)+1/2^(n-1)
=1/2+1/4+1/8+1/16+……1/2^(n-2)+[1/2^(n-1)+1/2^(n-1)]
=1/2+1/4+1/8+1/16+……+1/2^(n-2)+1/2^(n-2)
=……
=1/2+1/4+1/8+1/16+1/16
=1/2+1/4+1/8+1/8
=1/2+1/4+1/4
=1/2+1/2
=1。
S=1-1/(2^n)。收起