一次函数的公式?????
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式:y=a(x-h)²+k或y=a(x+m)²+k (两个式子实质一样,但初中课本上都是第一个式子)
交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛...全部
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式:y=a(x-h)²+k或y=a(x+m)²+k (两个式子实质一样,但初中课本上都是第一个式子)
交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
5。常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6。
抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b²-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2;/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0)
7。
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b²)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax²+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b²)/4a);
⑷Δ=b²-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)²+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b²)/4a);
③y=a(x-x1)(x-x2)[交点式]
a≠0,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。
[编辑本段]二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2; +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2;
y=ax^2;+K。收起