搜索
首页 教育/科学 理工学科 数学

诱导公式

我忘了诱导公式怎么算的了,只记得“奇变偶不变,正负看象限”。本来这种比较弱的问题是应该自己看的,可是我没找到,就偷个懒,摆脱帮我讲一下。

全部回答

2009-03-13

0 0
    ★诱导公式★   常用的诱导公式有以下几组:   公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)=sinα   cos(2kπ+α)=cosα   tan(2kπ+α)=tanα   cot(2kπ+α)=cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)=-sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   公式三:   任意角α与 -α的三角函数值之间的关系:   sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   公式五:   利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα   (以上k∈Z)   注意:在做题时,将a看成锐角来做会比较好做。
     ※规律总结※   上面这些诱导公式可以概括为:   对于π/2*k ±α(k∈Z)的三角函数值,   ①当k是偶数时,得到α的同名函数值,即函数名不改变;   ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。
       (奇变偶不变)   然后在前面加上把α看成锐角时原函数值的符号。   (符号看象限)   例如:   sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
     当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。     所以sin(2π-α)=-sinα   上述的记忆口诀是:   奇变偶不变,符号看象限。
     公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α   所在象限的原三角函数值的符号可记忆   水平诱导名不变;符号看象限。     #   各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.   这十二字口诀的意思就是说:   第一象限内任何一个角的四种三角函数值都是“+”;   第二象限内只有正弦是“+”,其余全部是“-”;   第三象限内切函数是“+”,弦函数是“-”;   第四象限内只有余弦是“+”,其余全部是“-”.   上述记忆口诀,一全正,二正弦,三内切,四余弦   #   还有一种按照函数类型分象限定正负:   函数类型 第一象限 第二象限 第三象限 第四象限   正弦 。
    。。。。。。。。。。+。。。。。。。。。。。。+。。。。。。。。。。。。—。。。。。。。。。。。。—。。。。。。。。   余弦 。。。。。。。。。。。+。。。。。。。
  。。。。。—。。。。。。。。。。。。—。。。。。。。。。。。。+。。。。。。。。   正切 。  。。。。。。。。。。+。。。。。。。。。。。。—。。。。。。。。。。。。
  +。。。。。。。。。。。。—。。。。。。。。   余切 。。。。。。。。。。。+。。。。。。。。。。。。—。。。。。。。。。。。。+。。。。。。。。。。。。—。。。。。。。。  。

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
数学
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
学习帮助
K12
理工学科
数学
农业科学
生物学
建筑学
心理学
天文学
工程技术科学
化学
环境学
地球科学
生态学
物理学
数学
数学
举报
举报原因(必选):
取消确定举报