数学已知α、β为锐角,且3sin²α+2sin²β=1,3sin2α-2sin2β=0.求证:α+2β= π/2。
已知α、β为锐角,且3sin²α+2sin²β=1,3sin2α-2sin2β=0。求证:α+2β= π/2。
证:3sin²α+2sin²β=1→3sin²α=1-2sin²β→3sin²α=cos2β。 。(1)
3sin2α-2sin2β=0→3sin2α=2sin2β→(3/2)sin2α=sin2β。。。。 (2)
(1)^2+(2)^2:
(3sin²α)^2+[(3/2)sin2α]^2=1→
(3sin²α)^2+[(3/2)*2sinαcosα]^2=1→
(3sin²...全部
已知α、β为锐角,且3sin²α+2sin²β=1,3sin2α-2sin2β=0。求证:α+2β= π/2。
证:3sin²α+2sin²β=1→3sin²α=1-2sin²β→3sin²α=cos2β。
。(1)
3sin2α-2sin2β=0→3sin2α=2sin2β→(3/2)sin2α=sin2β。。。。
(2)
(1)^2+(2)^2:
(3sin²α)^2+[(3/2)sin2α]^2=1→
(3sin²α)^2+[(3/2)*2sinαcosα]^2=1→
(3sin²α)^2+[(3sinαcosα]^2=1→
9(sin²α)^2+9sin²α*cos²α=1→
9(sin²α)*[sin²α+cos²α]=1→
9(sin²α)*1=1→
sin²α=1/9代入3sin²α+2sin²β=1→
3*(1/9)+2sin²β=1→
2sin²β=2/3→
sin²β=1/3→
α、β为锐角→
sinα=1/3,sinβ=√3/3→
cosα=(2√2)/3,cosβ=√6/3→
sin2β=2sinβcosβ=(2√2)/3
cos2β=1-2sin²β=1/3
sin(α+2β)=sinαcos2β+cosαsin2β
=(1/3)*(1/3)+(2√2)/3*(2√2)/3
=1/9+8/9
=1
0<α<π/2,0<β<π/2,0<2β<π,→0<α+2β<3π/2
∴α+2β=π/2
。收起