如果一个四边形是平行四边形并且他的对角线互相垂直,那么这个平行四边形是菱形吗?
对角线互相垂直且平分; 四条边都相等; 对角相等,邻角互补; 每条对角线平分一组对角, 菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形 在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。 菱形具备平行四边形的一切性质。一组邻边相等的平行四边形是菱形 四边相等的四边形是菱形 关于两条对角线都成轴对称的四边形是菱形 对角线互相垂直且平分的四边形是菱形。 依次连接四边形各边中点所得的四边形称为中点四边形。 不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形) ,对角线相等的四边形...全部
对角线互相垂直且平分; 四条边都相等; 对角相等,邻角互补; 每条对角线平分一组对角, 菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形 在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
菱形具备平行四边形的一切性质。一组邻边相等的平行四边形是菱形 四边相等的四边形是菱形 关于两条对角线都成轴对称的四边形是菱形 对角线互相垂直且平分的四边形是菱形。 依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形) ,对角线相等的四边形的中点四边形定为菱形。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
顺次连接菱形各边中点 为矩形 正方形是特殊的菱形 菱形不一定是正方形 所以,在同一平面上四边相等的图形不只是正方形。收起