生物植物的蒸腾作用,光合作用,呼
叶绿体
叶绿体(chloroplast):藻类和植物体中含有叶绿素进行光合作用的器官。
几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主要的能量转换者是因为它们均含有叶绿体(Chloroplast)这一完成能量转换的细胞器,它能利用光能同化二氧化碳和水,合成糖,同时产生氧。 所以绿色植物的光合作用是地球上有机体生存、繁殖和发展的根本源泉。
一、形态与结构
在高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。
在藻...全部
叶绿体
叶绿体(chloroplast):藻类和植物体中含有叶绿素进行光合作用的器官。
几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主要的能量转换者是因为它们均含有叶绿体(Chloroplast)这一完成能量转换的细胞器,它能利用光能同化二氧化碳和水,合成糖,同时产生氧。
所以绿色植物的光合作用是地球上有机体生存、繁殖和发展的根本源泉。
一、形态与结构
在高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。
在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。
叶绿体由叶绿体外被(chloroplast envelope)、类囊体(thylakoid)和基质(stroma)3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔
(一)外被
叶绿体外被由双层膜组成,膜间为10~20nm的膜间隙。
外膜的渗透性大,如核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。
内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。
蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。
(二)类囊体
是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。
膜上含有光合色素和电子传递链组分,又称光合膜。
许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒片层(grana lamella)。基粒直径约0。
25~0。8μm,由10~100个类囊体组成。每个叶绿体中约有40~60个基粒。
贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,它们形成了内膜系统的基质片层(stroma lamella)。
由于相邻基粒经网管状或扁平状基质类囊体相联结,全部类囊体实质上是一个相互贯通的封闭系统。类囊体做为单独一个封闭膜囊的原始概念已失去原来的意义,它所表示的仅仅是叶绿体切面的平面形态。
类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱含脂肪酸(约87%),具有较高的流动性。
光能向化学能的转化是在类囊体上进行的,因此类囊体膜亦称光合膜,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统 Ⅰ、光系统Ⅱ复合物等。
(三)基质
是内膜与类囊体之间的空间,主要成分包括:
碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。
叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。
一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。
二、光合作用机理
光合作用的是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。
分为光反应(light reaction)和暗反应(dark reaction),前者需要光,涉及水的光解和光合磷酸化,后者不需要光,涉及CO2的固定。分为C3和C4两类。
(一)光合色素和电子传递链组分
1.光合色素
类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:l,全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。
2.集光复合体(light harvesting complex)
由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。
因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。
3.光系统Ⅱ(PSⅡ)
吸收高峰为波长680nm处,又称P680。
至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light- hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。
D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。
4.细胞色素b6/f复合体(cyt b6/f complex)
可能以二聚体形成存在,每个单体含有四个不同的亚基。
细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。
5.光系统Ⅰ(PSI)
能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。
由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的 4Fe-4S。
(二)光反应与电子传递
P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心 D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。
2H 2O→O2 + 4H+ + 4e-
在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。
质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin, PC)中的Cu2+,再将电子传递到光系统Ⅱ。
P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。
失去电子的P700从PC处获取电子而还原
以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。
(三)光合磷酸化
一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。
ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。
(四)暗反应
C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。
CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。
C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP,最初产物为草酰乙酸(OAA)。
景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。
三、叶绿体的半自主性
线粒体与叶绿体都是细胞内进行能量转换的场所,两者在结构上具有一定的相似性。
①均由两层膜包被而成,且内外膜的性质、结构有显著的差异。②均为半自主性细胞器,具有自身的DNA和蛋白质合成体系。因此绿色植物的细胞内存在3个遗传系统。
叶绿体DNA由Ris和Plaut 1962最早发现于衣藻叶绿体。
ctDNA呈环状,长40~60μm,基因组的大小因植物而异,一般约200Kb-2500Kb。数目的多少植物的发育阶段有关,如菠菜幼苗叶肉细胞中,每个细胞含有20个叶绿体,每个叶绿体含DNA分子200个,但到接近成熟的叶肉细胞中有叶绿体150个,每个叶绿体含30个DNA分子。
和线粒体一样,叶绿体只能合成自身需要的部分蛋白质,其余的是在细胞质激离的核糖体上合成的,必需运送到叶绿体,才能发挥叶绿体应有的功能。已知由 ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4。
5S及5S),20种(烟草)或31种(地钱)tRNA,约90多种多肽。
由于叶绿体在形态、结构、化学组成、遗传体系等方面与蓝细菌相似,人们推测叶绿体可能也起源于内共生的方式,是寄生在细胞内的蓝藻演化而来的。
四、叶绿体的增殖
在个体发育中叶绿体由原质体发育而来,原质体存在于根和芽的分生组织中,由双层被膜包围,含有DNA,一些小泡和淀粉颗粒的结构,但不含片层结构,小泡是由质体双层膜的内膜内折形成的。
在有光条件原质体的小泡数目增加并相互融合形成片层,多个片层平行排列成行,在某些区域增殖,形成基粒,变成绿色原质体发育成叶绿体。
在黑暗性长时,原质体小泡融合速度减慢,并转变为排列成网格的小管的三维晶格结构,称为原片层,这种质体称为黄色体。
黄色体在有光的情况下原片层弥散形成类囊体,进一步发育出基粒,变为叶绿体。
叶绿体能靠分裂而增殖,这各分裂是靠中部缢缩而实现的,在发育7天的 幼叶的基部2-2。5cm处很容易看到幼龄叶绿体呈哑铃形状,从菠菜幼叶含叶绿体少,ctDNA多,老叶含叶绿体多,每个叶绿体含ctDNA少的现象也可以看出叶绿体是以分裂的方式增殖的。
成熟叶绿体正常情况下一般不再分裂或很少分裂。
高等植物的叶绿体主要存在于叶肉细胞内,含有叶绿素。电镜观察表明: 叶绿体外有光滑的双层单位膜,内膜向内叠成内囊体,若干内囊体垛叠成基粒。
基粒内的某些内囊体内向外伸展,连接不同基粒。连接基粒的类囊体部分,称为基质片层;构成基粒的类囊体部分,称为基粒片层。
在个体发育上,叶绿体来自前质体,由前质体发育成叶绿体。
线粒体
形态与分布
线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。
主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65-70%,脂类占25-30%。一般直径0。5~1μm,长1。5~3。0μm,在胰脏外分泌细胞中可长达10~20μm,称巨线粒体。数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。
通常结合在维管上,分布在细胞功能旺盛的区域。如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。
超微结构
线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔(图7-1、7-2)。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。
1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。
2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。
如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。
3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。
由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。
4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。
催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。
基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子
线粒体的半自主性
1963年M。 和 S。 Nass发现线粒体DNA(mtDNA)后,人们又在线粒体中发现了RNA、DNA聚合酶、RNA聚合酶、tRNA、核糖体、氨基酸活化酶等进行DNA复制、转录和蛋白质翻译的全套装备,说明线粒体具有独立的遗传体系。
虽然线粒体也能合成蛋白质,但是合成能力有限。线粒体1000多种蛋白质中,自身合成的仅十余种。线粒体的核糖体蛋白、氨酰tRNA 合成酶、许多结构蛋白, 都是核基因编码, 在细胞质中合成后,定向转运到线粒体的,因此称线粒体为半自主细胞器。
利用标记氨基酸培养细胞,用氯霉素和放线菌酮分别抑制线粒体和细胞质蛋白质合成的方法,发现人的线粒体DNA编码的多肽为细胞色素c氧化酶的3个亚基, F0的2个亚基,NADH脱氢酶的7个亚基和细胞色素b等13条多肽。
此外线粒体DNA还能合成12S和16SrRNA及22种tRNA。
mtDNA分子为环状双链DNA分子,外环为重链(H),内环为轻链(L )。基因排列非常紧凑,除与mtDNA复制及转录有关的一小段区域外,无内含子序列。
每个线粒体含数个m tDNA,动物m tDNA 约16-20kb,大多数基因由H链转录, 包括2个rRNA , 14个tRNA 和12个编码多肽的mRNA , L链编码另外8个tRNA和一条多肽链。
mtDNA上的基因相互连接或仅间隔几个核苷酸序列, 一些多肽基因相互重叠,几乎所有阅读框都缺少非翻译区域。很多基因没有完整的终止密码, 而仅以T或TA 结尾,mRNA的终止信号是在转录后加工时加上去的。
线粒体在形态,染色反应、化学组成、物理性质、活动状态、遗传体系等方面,都很像细菌,所以人们推测线粒体起源于内共生。按照这种观点,需氧细菌被原始真核细胞吞噬以后,有可能在长期互利共生中演化形成了现在的线粒体。
在进化过程中好氧细菌逐步丧失了独立性,并将大量遗传信息转移到了宿主细胞中,形成了线粒体的半自主性。
线粒体遗传体系确实具有许多和细菌相似的特征,如:①DNA为环形分子,无内含子;②核糖体为70S型;③RNA聚合酶被溴化乙锭抑制不被放线菌素D所抑制;④tRNA、氨酰基-tRNA合成酶不同于细胞质中的;⑤蛋白质合成的起始氨酰基tRNA是N-甲酰甲硫氨酰tRNA,对细菌蛋白质合成抑制剂氯霉素敏感对细胞质蛋白合成抑制剂放线菌酮不敏感。
此外哺乳动物mtDNA的遗传密码与通用遗传密码有以下区别:①UGA不是终止信号,而是色氨酸的密码;②多肽内部的甲硫氨酸由AUG和AUA两个密码子编码,起始甲硫氨酸由AUG,AUA,AUU和AUC四个密码子编码;③AGA,AGG不是精氨酸的密码子,而是终止密码子,线粒体密码系统中有4个终止密码子(UAA,UAG,AGA,AGG)。
mtDNA表现为母系遗传。其突变率高于核DNA,并且缺乏修复能力。有些遗传病,如Leber遗传性视神经病,肌阵挛性癫痫等均与线粒体基因突变有关。
线粒体的增殖
线粒体的增殖是通过已有的线粒体的分裂,有以下几种形式:
1、间壁分离,分裂时先由内膜向中心皱褶,将线粒体分类两个,常见于鼠肝和植物产生组织中
2、收缩后分离,分裂时通过线粒体中部缢缩并向两端不断拉长然后分裂为两个,见于蕨类和酵母线粒体中。
3、出芽,见于酵母和藓类植物,线粒体出现小芽,脱落后长大,发育为线粒体。
。收起