再次请教几个高数题目!见附件,谢
解:
1。
原式=∫[∫y/(1+x^2+y^2)^(3/2)dy]dx
=-∫[(1+x^2+y^2)^(-1/2)|]dx
=-∫[(2+x^2)^(-1/2)-(1+x^2)^(-1/2)]dx
=-[ln(x+√(2+x^2)-ln(x+√(1+x^2)]
=ln[(√6+2√3-√2-2)/2]
2。
化为极坐标,设x=rcosθ,y=rsinθ,0≤r≤R,0≤θ≤2π
则原式=∫∫[(rcosθ)^2/a^2+(rsinθ)^2/b^2]rdrdθ
=∫[∫[(cosθ)^2/a^2+(sinθ)^2/b^2]r^3dr]dθ
=∫[[(cosθ)^2/a^2+(sinθ...全部
解:
1。
原式=∫[∫y/(1+x^2+y^2)^(3/2)dy]dx
=-∫[(1+x^2+y^2)^(-1/2)|]dx
=-∫[(2+x^2)^(-1/2)-(1+x^2)^(-1/2)]dx
=-[ln(x+√(2+x^2)-ln(x+√(1+x^2)]
=ln[(√6+2√3-√2-2)/2]
2。
化为极坐标,设x=rcosθ,y=rsinθ,0≤r≤R,0≤θ≤2π
则原式=∫∫[(rcosθ)^2/a^2+(rsinθ)^2/b^2]rdrdθ
=∫[∫[(cosθ)^2/a^2+(sinθ)^2/b^2]r^3dr]dθ
=∫[[(cosθ)^2/a^2+(sinθ)^2/b^2]r^4/4|]dθ
=(R^4/4)∫[(cosθ)^2/a^2+(sinθ)^2/b^2]dθ
=(R^4/4)[(θ/2+(1/4)sin2θ)/a^2+(θ/2-(1/4)sin2θ)/b^2]|
=πR^2(a^2+b^2)/(4a^2b^2)
3。
原式=∫[∫e^(-y^2)dx]dy
=∫[xe^(-y^2)|]dy
=∫[ye^(-y^2)]dy
=(-1/2)e^(-y^2)|
=(e-1)/(2e)
4。
原式=∫[∫(x+y)dx]dy+∫[∫(x+y)dx]dy
=∫[(x^2/2+xy)|]dy+∫[(x^2/2+xy)|]dy
=∫[y^2]dy
=(1/3)y^3|
=1/3
。收起