用洛必达法则求下列极限
1、lim(x→0+) ln(tan3x)/ln(tan4x)
=lim(x→0+) 1/tan3x×(sec3x)^2)×3/(1/tan4x×(sec4x)^2×4)
=lim(x→0+) tan4x/tan3x×(cos4x)^2/(cos3x)^2×3/4
=3/4×lim(x→0+) tan4x/tan3x
=3/4×lim(x→0+) 4x/3x(等价无穷小替换)
=3/4×4/3=1
2、lim(x→0) x×cotx
=lim(x→0) x/tanx
=lim(x→0) 1/(secx)^2
=lim(x→0) (cosx)^2=1
3、lim(x→0) x^(tanx)...全部
1、lim(x→0+) ln(tan3x)/ln(tan4x)
=lim(x→0+) 1/tan3x×(sec3x)^2)×3/(1/tan4x×(sec4x)^2×4)
=lim(x→0+) tan4x/tan3x×(cos4x)^2/(cos3x)^2×3/4
=3/4×lim(x→0+) tan4x/tan3x
=3/4×lim(x→0+) 4x/3x(等价无穷小替换)
=3/4×4/3=1
2、lim(x→0) x×cotx
=lim(x→0) x/tanx
=lim(x→0) 1/(secx)^2
=lim(x→0) (cosx)^2=1
3、lim(x→0) x^(tanx)=lim(x→0) e^(tanx×lnx)
lim(x→0) tanx×lnx
=lim(x→0) x×lnx (等价无穷小替换)
=lim(x→0) lnx/(1/x)
=lim(x→0) 1/x / (-1/x^2)
=lim(x→0) (-x)=0
所以,lim(x→0) x^(tanx)=lim(x→0) e^(tanx×lnx)=e^0=1
4、lim(x→π/2) tanx/tan5x
=lim(x→π/2) sinx/sin5x×cos5x/cosx
=sin(π/2)/sin(5π/2)×lim(x→π/2) cos5x/cosx
=lim(x→π/2) cos5x/cosx
=lim(x→π/2) -sin5x×5/(-sinx)
=5×sin(5π/2)/sin(π/2)=5。
收起