地球有哪些基本物理性质
地球内部的主要物理性质包括密度、压力、重力、温度、磁性及弹塑性等。
①、密度:
根据万有引力公式可算出地球的质量为5。974×1021t,再利用地球体积可得出地球的平均密度为5。 516g/cm3。但从地表岩石实测的平均密度仅为2。7~2。8g/cm3,可以肯定地球内部必定有密度更大的物质。目前,对地球内部各圈层物质密度大小与分布的计算,主要是依靠地球的平均密度、地震波传播速度、地球的转动惯量及万有引力等方面的数据与公式综合求解而得出的。 计算结果表明,地球内部的密度由表层的2。7~2。8g/cm3向下逐渐增加到地心处的12。51g/cm3,并且在一些不连续面处有明显的跳跃,其中以古登...全部
地球内部的主要物理性质包括密度、压力、重力、温度、磁性及弹塑性等。
①、密度:
根据万有引力公式可算出地球的质量为5。974×1021t,再利用地球体积可得出地球的平均密度为5。
516g/cm3。但从地表岩石实测的平均密度仅为2。7~2。8g/cm3,可以肯定地球内部必定有密度更大的物质。目前,对地球内部各圈层物质密度大小与分布的计算,主要是依靠地球的平均密度、地震波传播速度、地球的转动惯量及万有引力等方面的数据与公式综合求解而得出的。
计算结果表明,地球内部的密度由表层的2。7~2。8g/cm3向下逐渐增加到地心处的12。51g/cm3,并且在一些不连续面处有明显的跳跃,其中以古登堡面(核-幔界面)处的跳跃幅度最大,从5。56g/cm3剧增到9。
98g/cm3;在莫霍面(壳-幔界面)处密度从2。9g/cm3左右突然增至3。32g/cm3。各圈层物质密度的大小及变化见表3。1。
②、压力:
地球内部的压力是指不同深度上单位面积上的压力,实质上是压强。
在地内深处某点,来自其周围各个方向的压力大致相等,其值与该点上方覆盖的物质的重量成正比。地内的这种压力又称为静压力或围压,按静压力平衡公式可表示为ρ=hρhgh(即静压力ρ等于某深度h和该深度以上的地球物质平均密度ρh与平均重力加速度gh的乘积)。
因此,地内压力总是随深度连续而逐渐地增加的。如果知道了地球内部物质的密度大小与分布,便可求出不同深度的压力值。例如,地壳的平均密度的2。75g/cm3,那么深度每增加1km,压力将增加约27。
5MPa(MPa读兆帕,1MPa=106N/m2)。计算证明,压力值在莫霍面处约1200MPa、古登堡面处约135200MPa、地心处达361700MPa。地球内部各圈层的压力大小及变化情况见表3。
1。
③、重力:
地球上的任何物体都受着地球的吸引力和因地球自转而产生的离心力的作用。
地球吸引力和离心力的合力就是重力(gravity)。地球的离心力相对吸引力来说是非常微弱的,其最大值不超过引力的1/288,因此重力的方向仍大致指向地心。
地球周围受重力影响的空间称重力场。重力场的强度用重力加速度来衡量,并简称为重力(单位为伽或毫伽:1Gal=1cm/s2=103mGal)。
地球表面各点的重力值因引力与离心力的不同呈现一定的规律性变化。
根据万有引力定律(F=Gm1m2/r2),地球表面的引力与地球半径的平方成反比,而地球的形状接近于一个赤道半径略大、两极半径略小的扁球体。因此,地球两极的重力值最大,并向赤道减小,减小数值可达1。
8Gal左右。依照离心力公式(C=mω2r),在角速度相同的情况下,地表各点的离心力与它到地球自转轴的垂直距离成正比。因此,离心力以赤道最大,可达3。4Gal,并全部用来抵消引力;向两极离心力逐渐减小为零,所以,在引力与离心力的共同引响下,重力值具有随纬度增高而增加的规律,赤道处重力值为978。
0318Gal,两极为983。2177Gal,两极比赤道增加5。1859Gal。 在地球内部,重力因深度而不同。
由于地球内部的惯性离心力变得更加微弱,故地球内部的重力可简单地看成是引力。
地球大体上是一个由均质同心球层组成的球体,在这样的球体内部,影响重力大小的不是地球的总质量,而只是所在深度以下的质量。如质点位于地下2885km深处的核-幔界面上时,对质点具有引力的只是地核,而地壳与地幔对质点的引力因其呈圈层状而正好相互抵消。
根据上述原理,利用地球内部的密度分布规律,便可求出地球内部不同深部的重力值。从地表到地下2885km的核-幔界面,重力值大体上随深度而增加,但变化不大,在2885km处达到极大值(约1069Gal)。
这是因为地壳、地幔的密度低,而地核的密度高,以致质量减小对重力的影响比距离减小的影响要小一些。从2885km 到地心处,由于质量逐渐减小为零,故重力也从极大值迅速减小为零(参见表3。1)。
④、温度:
深矿井温度增高、温泉和火山喷出炽热的岩浆等等事实,都告诉我们地球内部是热的。
温度在地球内部的分布状况称为地温场(geotermal field)。
在地壳表层,由于太阳辐射热的影响,其温度常有昼夜变化、季节变化和多年周期变化,这一层称为外热层。外热层受地表温差变化的影响由表部向下逐渐减弱,外热层的平均深度约15m,最多不过几十米。
在外热层的下界处,温度常年保持不变,等于或略高于年平均气温,这一深度带称为常温层。在常温层以下,由于受地球内部热源的影响,温度开始随深度逐渐增高。通常把地表常温层以下每向下加深100m所升高的温度称为地热增温率或地温梯度(geothermal gradient)(温度每增加1℃所增加的深度则称为地热增温级)。
世界上不同地区地温梯度并不相同,如我国华北平原约为1~2℃,大庆油田可达5℃。据实测,地球表层的平均地温梯度约为3℃;海底的平均地温梯度为4~8℃,大陆为0。9~5℃,海底的地温梯度明显高于大陆。
地温梯度是据地壳浅部实测所得的平均值,一般只适合于用来大致推算地球浅层(地壳以内)的地温分布规律,并不适用于整个地球内部。如果按平均100m增温3℃计算,至地壳底部地温将超过900℃,到地心将高达200000℃的惊人数值,在这样的温度条件下,地球内部除了地壳以外当绝大部分处于熔融甚至气体状态,这与地球内部绝大部分可以通过地震波横波(即主要为固态)的观测事实不符。
实际上,地温梯度是随深度增加逐渐降低的。对于地球深部的温度分布,目前主要是根据地震波的传播速度与介质熔点温度的关系式推导得出的。根据目前最新的推算资料,在莫霍面处的地温大约为400~1000℃,在岩石圈底部大约为1100℃,在上、下地幔界面附近(约650km深处)大约为1900℃,在古登堡面(核幔界面)附近大约为3700℃,地心处的温度大约为4300~4500℃(见表3。
1)。由于热具有从高温向低温传播的性质,所以地球内部的高温热能总是以对流、传导和辐射等方式向地表传播并散失到外部空间,通常把单位时间内通过地表单位面积的热量称为地热流密度(geothermal heat flow)。
目前全球实测的平均地热流值为1。47×41。686mW/m2,大陆地表热流的平均值(1。46×41。686mW/m2)与海底的平均值(1。47×41。686mW/m2)基本相等。地表的不同地区地热流值并不相同,一般在一些构造活动的地区(如年青山脉、大洋中脊、火山、岛弧等)热流值偏高,而在一些构造稳定的地区热流值偏低。
地表热流值或地温梯度明显高于平均值或背景值的地区称为地热异常区。地热异常可以用来研究地质构造的特征,同时对研究矿产(如金矿、石油等)的形成与分布也具有重要作用。地热也是一种重要的天然资源,寻找地热田可用于发电、工业、农业、医疗和民用等。
⑤、磁场:
地球周围存在着磁场,称地磁场(geomagnetic field)。地磁场近似于一个放置地心的磁棒所产生的磁偶极子磁场,它有两个磁极,S极位于地理北极附近,N极位于地理南极附近。
两个磁极与地理两极位置相近,但并不重合,磁轴与地球自转轴的夹角约为15°。以地磁极和地磁轴为参考系定出的南北极、赤道及子午线被称为磁南极、磁北极、磁赤道及磁子午线。1980年实测的磁北极位置为北纬78。
2°、西经102。9°(加拿大北部),磁南极位置为南纬65。5°、东经139。4°(南极洲)。长期观测证实,地磁极围绕地理极附近进行着缓慢的迁移。
地磁场的磁场强度是一个具有方向(即磁力线的方向)和大小的矢量,为了确定地球上某点的磁场强度,通常采用磁偏角、磁倾角和磁场强度三个地磁要素。
磁偏角是磁场强度矢量的水平投影与正北方向之间的夹角,变即磁子午线与地理子午线之间的夹角。如果磁场强度矢量的指向偏向正北方向以东称东偏,偏向正北方向以西称西偏。我国东部地区磁偏角为西偏,甘肃酒泉以西多为东偏。
磁倾角是磁场强度矢量与水平面的交角,通常以磁场强度矢量指向下为正值,指向上则为负值。磁倾角在磁赤道上为0°;由磁赤道到磁北极磁倾角由0°逐渐变为+90°;由磁赤道到磁南极磁倾角由0°逐渐变为-90°。
磁场强度大小是指磁场强度矢量的绝对值。地磁场的强度很弱,平均为50μT(T为特[斯拉]的符号);在磁力线较密的地磁极附近强度最大,为6OμT左右;由磁极向磁赤道强度逐渐减弱;在磁赤道附近最小,
近代对地磁场的研究指出,地磁场由基本磁场、变化磁场和磁异常三个部分组成。
基本磁场占地磁场的99%以上,是构成地磁场主体的稳定磁场。它决定了地磁场相似于偶极场的特征,其强度在近地表时较强,远离地表时则逐渐减弱。这些特征说明了基本磁场是起源于地球内部。
对于基本磁场的起源,过去曾认为地球本身是一个大永久磁铁,使得它周围产生磁场。但现代物理证明,当物质的温度超过其居里温度点时,铁磁体本身便失去磁性。铁磁体的居里温度是500~700℃,而地球深部的温度远远超过此数值,所以地球内部不可能是一个庞大的磁性体。
现今比较流行的地磁场起源假说是自激发电机假说。该假说认为地磁场主要起源于地球内部的外地核圈层。由于外地核可能为液态,并且主要由铁、镍组成,因此它可能为一个导电的流体层,这种流体层容易发生差异运动或对流。
如果在地核空间原来存在着微样的磁场时,上述差异运动或对流就会感生出电流产生新的磁场,使原来的弱磁场增强;增强了的磁场使感生电流增强,并导致磁场进一步增强。如此不断进行,磁场增强到一定程度就稳定下来,于是便形成了现在的基本地磁场。
变化磁场是起源于地球外部并叠加在基本磁场上的各种短期变化磁场。它只占地磁场的很小部分(<1%)。这种磁场主要是由太阳辐射、太阳带电粒子流、太阳的黑子活动等因素所引起的。因此,它常包含有日变化、年变化及太阳黑子活动引起的磁暴(即较剧烈的变化)等成分。
磁异常(magnetic anomaly)是地球浅部具有磁性的矿物和岩石所引起的局部磁场它也叠加在基本磁场之上。一个地区或地点的磁异常可以通过将实测地磁场进行变化磁场的校正之后,再减去基本磁场的正常值而求得。
如所得值为正值称正磁异常,为负值称负磁异常。自然界有些矿物或岩石具有较强的磁性,如磁铁矿、铬铁矿、钛铁矿、镍矿、超基性岩等,它们常常能引起正异常。因此,利用磁异常可以进行找矿勘探和了解地下的地质情况。
⑥、弹塑性:
地球具有弹性,表现在地球内部能传播地震波,因为地震波是弹性波。日、月的吸引力能使海水发生涨落即潮汐现象,用精密仪器对地表的观测发现,地表的固体表面在日、月引力下也有交替的涨落现象,其幅度为 7~15 cm,这种现象称为固体潮,这也说明固体地球具有弹性。
同时,地球也表现出塑性。地球自转的惯性离心力能使地球赤道半径加大而成为椭球体,表明地球具有塑性;在野外常观察到一些岩石可发生强烈的弯曲却未破碎或断裂,这也表明固体地球具有塑性。地球的弹、塑性这两种性质并不矛盾,它们是在不同的条件下所表现出来的。
如在作用速度快、持续时间短的力(如地震作用力)的条件下,地球常表现为弹性体;在作用力缓慢且持续时间长(如地球旋转离心力、构造运动作用力)或在地下深部较高的温、压条件下,则可表现出较强的塑性。 。
收起