(重复)几何不等式-2命题设P
命题 设P是正△ABC内任意一点,△DEF是P点关于正△ABC的内接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。 求证:S2≥S1 。
证明 设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。
由三角形重心坐标定义易求得:
AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y)。
故得:
△A...全部
命题 设P是正△ABC内任意一点,△DEF是P点关于正△ABC的内接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。
求证:S2≥S1 。
证明 设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。
由三角形重心坐标定义易求得:
AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y)。
故得:
△AEF的面积 X=AE*AF*sin60°/2=Syz/(z+x)(x+y);
△BFD的面积 Y=BF*BD*sin60°/2=Szx/(x+y)(y+z);
△CDE的面积 Z=CD*CE*sin60°/2=Sxy/(y+z)(z+x)。
从而有 S1=S-X-Y-Z=2xyzS/(y+z)(z+x)(x+y)。
因为P点是△KNM的费马点,从而易求得:
PK=(xa√3)/[2(x+y+z)],
PN=(ya√3)/[2(x+y+z)],
PM=(za√3)/[2(x+y+z)]。
故得:
S2=(PN*PM+PM*PK+PK*PN)*sin120/2=3S(yz+zx+xy)/[4(x+y+z)^2]。
所以待证不等式S2≥S1等价于:
(3/4)*(yz+zx+xy)/(x+y+z)^2≥2xyz/(y+z)(z+x)(x+y);
3(y+z)(z+x)(x+y)(yz+zx+xy)≥8xyz(x+y+z)^2;
上式展开等价于
3x^3(y^2+z^2)+3y^3(z^2+x^2)+3z^3(x^2+y^2)-2xyz(x^2+y^2+z^2)-4xyz(yz+zx+xy)≥0;
上式化简等价于
x^2(x+2y+2z)(y-z)^2+y^2(y+2z+2x)(z-x)^2+z^2(z+2x+2y)(x-y)^2≥0。
因为P点在正△ABC内,故x>0,y>0,z>0,所以上式显然成立。问题得证。
。收起