重庆邮电大学考研大纲(高数)有哪些?
命题方式 招生单位自命题 科目类别 初试
满分 150
考试性质
试卷满分为150分,考试时间为180分钟。
考试方式和考试时间
答题方式为闭卷、笔试。
试卷结构
试卷内容结构
微积分学 约60%
微分方程与无穷级数 约30%
向量代数与空间解析几何 约10%
试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
考试内容和要求
(一)函数、极限、连续
考试内容:
集合及其运算 确界存在定理 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本...全部
命题方式 招生单位自命题 科目类别 初试
满分 150
考试性质
试卷满分为150分,考试时间为180分钟。
考试方式和考试时间
答题方式为闭卷、笔试。
试卷结构
试卷内容结构
微积分学 约60%
微分方程与无穷级数 约30%
向量代数与空间解析几何 约10%
试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
考试内容和要求
(一)函数、极限、连续
考试内容:
集合及其运算 确界存在定理 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:(单调有界准则和夹逼准) 两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求:
1.了解集合的上、下确界,理解确界存在定理,理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.了解数列极限和函数极限(包括左极限与右极限)的概念。
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7.理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,了解函数的一致连续性 理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、一致连续),并会应用这些性质。
(二)一元函数微分学
考试内容:
导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值
考试要求:
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理,了解泰勒定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用。
6.会用洛必达法则求极限。
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数,当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线。
9.会描述简单函数的图形。
(三)一元函数积分学
考试内容:
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用
考试要求:
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法。
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。
收起