平面向量
正弦定理
1- c/2a =(2a-c)/2a = (2sinA-sinC)/2sinA
又sin(B+C)=sinA
原式 (2sinA-sinC)/2sinA =sin(B-C)/sinA
====>2sinA -sinC =2sin(B-C)
2[sinA -sin(B-C)] =sinC
2*2cos[(A+B-C)/2]sin[(A-B+C)/2] =sinC
4cos[(180-2C)/2]sin[(180-2B)/2]=sinC
4cos(90-C)sin(90-B)=sinC
4sinCcosB =sinC
===>cosB =1/4 ==>sinB =(根号15)/...全部
正弦定理
1- c/2a =(2a-c)/2a = (2sinA-sinC)/2sinA
又sin(B+C)=sinA
原式 (2sinA-sinC)/2sinA =sin(B-C)/sinA
====>2sinA -sinC =2sin(B-C)
2[sinA -sin(B-C)] =sinC
2*2cos[(A+B-C)/2]sin[(A-B+C)/2] =sinC
4cos[(180-2C)/2]sin[(180-2B)/2]=sinC
4cos(90-C)sin(90-B)=sinC
4sinCcosB =sinC
===>cosB =1/4 ==>sinB =(根号15)/4
S =(1/2)acsinB = 根号15 ==>ac =8
a+c =6
aa=2 c=4
b^ =c^+a^ -2accosB ====>b =4
。
收起