求下列函数的单调区间和极值点、极值
求下列函数的单调区间:解:1。函数y = x3– 3x2 – 9x 14,求导可得y ’ = 3x2 – 6x – 9 ;1)令y ’ > 0可得3x2– 6x – 9 > 0 => x2 – 2x – 3 > 0 => (x 1)(x – 3) > 0=> x 3,此时原函数单调递增;2)令y ’ x2 – 2x – 3 (x 1)(x – 3) -1 0,即x > -1,求导可得y ’ = 1 –1/(1 x) = [(1 x) – 1]/(1 x) = x/(x 1) ;1)令y ’ > 0可得x/(x 1)> 0 => x(x 1) >...全部
求下列函数的单调区间:解:1。函数y = x3– 3x2 – 9x 14,求导可得y ’ = 3x2 – 6x – 9 ;1)令y ’ > 0可得3x2– 6x – 9 > 0 => x2 – 2x – 3 > 0 => (x 1)(x – 3) > 0=> x 3,此时原函数单调递增;2)令y ’ x2 – 2x – 3 (x 1)(x – 3) -1 0,即x > -1,求导可得y ’ = 1 –1/(1 x) = [(1 x) – 1]/(1 x) = x/(x 1) ;1)令y ’ > 0可得x/(x 1)> 0 => x(x 1) > 0 => x > 0,此时原函数单调递增;2)令y ’ x(x 1) -1 0可得2/[33√(x – 1)] > 0 => 3√(x – 1) > 0 => x – 1 > 0 => x > 1,此时原函数单调递增;2)令y ’ 3√(x – 1) x – 1 x (x 1)(x – 3) = 0 => x 1 = 0或者x – 3 = 0,所以x = -1或者x = 3,所以-1和3是极值点。
因为在x = -1左侧,有f ’(x) >0,在x = -1右侧,有f ’(x) 0,所以函数f(x)的极小值是f(3) =(1/3)*33 – 32 – 3*3 3 = 9 – 9 – 9 3 = -6 ; ②y = 3 – 2(x 1)1/3 ,求导可得y ’ = (-2)*(1/3)(x 1)-2/3 = (-2/3)3√[1/(x 1)2] = -2/[33√(x 1)2],恒有y ’ < 0,(函数在定义域内单调递减),因此y ’≠ 0,所以所求函数没有极值点,没有极值。
收起