函数y=2/(tanx-cotx)的图像的对称轴此题的答案为(-π/8,0),
设对称轴坐标为(t,0),则 2/(tan(x-t)-cot(x-t))=2/(tan(2t-x)-cot(2t-x)); tan(x-t)-cot(x-t)=tan(2t-x)-cot(2t-x); tan(2t-x)-tan(x-t)=cot(2t-x)-cot(x-t); 右=[tan(x-t)-tan(2t-x)]/[tan(x-t)·tan(2t-x)]; 则tan(2t-x)-tan(x-t)=[tan(x-t)-tan(2t-x)]/[tan(x-t)·tan(2t-x)]; tan(x-t)·tan(2t-x)=-1; tan(x-t)·tan(x-2t)=1; [(tan...全部
设对称轴坐标为(t,0),则 2/(tan(x-t)-cot(x-t))=2/(tan(2t-x)-cot(2t-x)); tan(x-t)-cot(x-t)=tan(2t-x)-cot(2t-x); tan(2t-x)-tan(x-t)=cot(2t-x)-cot(x-t); 右=[tan(x-t)-tan(2t-x)]/[tan(x-t)·tan(2t-x)]; 则tan(2t-x)-tan(x-t)=[tan(x-t)-tan(2t-x)]/[tan(x-t)·tan(2t-x)]; tan(x-t)·tan(2t-x)=-1; tan(x-t)·tan(x-2t)=1; [(tanx-tant)/(1 tanx·tant)][(tanx-tan2t)/(1 tanx·tan2t)]=1; (tanx)^2-(tant tan2t)tanx tant·tan2t=1 tanx·(tant tan2t) (tanx)^2·tant·tan2t (tanx)^2·(1-tant·tan2t)-2tanx·(tant tan2t)=1-tant·tan2t;[1-(tanx)^2]·(1-tant·tan2t) 2tanx·(tant tan2t)=0;[1-(tanx)^2]·{1-tant·2tant/[1-(tant)^2]} 2tanx·[tant 2tant/(1-(tant)^2]=0;。
收起