已知复数Z=a+bi是方程x^2-4x+5的根,复数w=u+3i满足w-z的绝对值小于2倍根号5,求u的取值范围
已知复数Z=a+bi是方程x^2-4x+5的根,复数w=u+3i满足w-z的绝对值小于2倍根号5,求u的取值范围
z=a+bi是方程x^2-4x+5=0的根,那么其共轭复数a-bi也是它的根
所以:
(a+bi)+(a-bi)=4
(a+bi)*(a-bi)=5
解得:a=2,b=±1
所以,z=2±i
当z=2+i时,|w-z|=|u+3i-(2+i)|=|(u-2)+2i|<2√5
===> √[(u-2)^2+2^2]<2√5
===> (u-2)^2+4<20
===> (u-2)^2<16
===> -4<u-2<4
===> -2<u<6
当z=2-i时,|w-z|=|u+3i...全部
已知复数Z=a+bi是方程x^2-4x+5的根,复数w=u+3i满足w-z的绝对值小于2倍根号5,求u的取值范围
z=a+bi是方程x^2-4x+5=0的根,那么其共轭复数a-bi也是它的根
所以:
(a+bi)+(a-bi)=4
(a+bi)*(a-bi)=5
解得:a=2,b=±1
所以,z=2±i
当z=2+i时,|w-z|=|u+3i-(2+i)|=|(u-2)+2i|<2√5
===> √[(u-2)^2+2^2]<2√5
===> (u-2)^2+4<20
===> (u-2)^2<16
===> -4<u-2<4
===> -2<u<6
当z=2-i时,|w-z|=|u+3i-(2-i)|=|(u-2)+4i|<2√5
===> (u-2)^2+4^2<20
===> (u-2)^2<4
===> -2<u-2<2
===> 0<u<4
综上:0<u<4。
收起