已知奇函数fx满足fx+2=-f
已知奇函数f(x)满足f(x+2)=-f(x),且当x∈(0,1)时f(x)=2^x,求f(log(1/2)_18)其中,log(1/2)_18 表示以1/2为底,18的对数。 **************************************************************************解:用换底公式,得 log(1/2)_18 = (log2_18)/[log2_(1/2)] = [log2_(2×9)] / [log2_2^(-1)] ...全部
已知奇函数f(x)满足f(x+2)=-f(x),且当x∈(0,1)时f(x)=2^x,求f(log(1/2)_18)其中,log(1/2)_18 表示以1/2为底,18的对数。
**************************************************************************解:用换底公式,得 log(1/2)_18 = (log2_18)/[log2_(1/2)] = [log2_(2×9)] / [log2_2^(-1)] = (1 + log2_9) / (-1) = - 1 - log2_9 ∵ f(x+2)=-f(x) ∴ f(x+4)=f((x+2)+2) = - f(x+2) = f(x) 又,f(x)为奇函数, ∴ f(x+4)= - f(-x-4) 即有, f(x) = - f(-x-4) ∴ f(log(1/2)_18) = f( -1 - log2_9 ) = - f( 1 + log2_9 - 4 ) = - f( log2_9 - 3 ) = - f(log2_(9/8)) ∵ 对数函数log2_x为增函数,而 1<9/8<2 ∴ log2_1<log2_(9/8)<log2_2 即, 0<log2_(9/8)<1 由题意,当x∈(0,1)时,f(x)=2^x ∴ f(log2_(9/8)) = 2^[log2_(9/8)] = 9/8 ∴ f(log(1/2)_18) = - f(log2_(9/8)) = - 9/8 。收起