动脉血压怎么形成的?动脉血压的形
动脉血压的形成 心血管系统内血压的形成因素有﹕ 由心血管系统内充满血液而产生。这在封闭型循环系统的动物最为明显。当这种动物心搏停止时﹐心血管系统各部仍有比大气压高 7毫米汞柱的血压。这种由于血液充满心血管系统的压力叫体循环平均压﹐是一种充盈压﹔ 由心脏的射血力产生。 心搏周期心室肌收缩所释放的能量﹐一部分成为推动血液迅速流动的动能﹐另一部分转化为位能﹐表现为动脉血压﹐它使主动脉骤行扩张﹐存储部分输出血量成为心室舒张时继续推动血液流动的动力。这使动脉系统无论在心脏的收缩期和舒张期都能保持稳定的血压来推动血液循环 。 如果用T形动脉插管接动脉再连以测压计,则由T形管侧管测得的血压是该部的...全部
动脉血压的形成 心血管系统内血压的形成因素有﹕ 由心血管系统内充满血液而产生。这在封闭型循环系统的动物最为明显。当这种动物心搏停止时﹐心血管系统各部仍有比大气压高 7毫米汞柱的血压。这种由于血液充满心血管系统的压力叫体循环平均压﹐是一种充盈压﹔ 由心脏的射血力产生。
心搏周期心室肌收缩所释放的能量﹐一部分成为推动血液迅速流动的动能﹐另一部分转化为位能﹐表现为动脉血压﹐它使主动脉骤行扩张﹐存储部分输出血量成为心室舒张时继续推动血液流动的动力。这使动脉系统无论在心脏的收缩期和舒张期都能保持稳定的血压来推动血液循环 。
如果用T形动脉插管接动脉再连以测压计,则由T形管侧管测得的血压是该部的侧压﹐关闭侧管﹐将血压计与直管相连所测的血压为终端压。终端压即侧压与血液流动动能之和的压力。等于1/2 ( 为血液密度﹐ 为血流速度)。
人在静息时心输出量每分钟约5升,主动脉血流速度约每秒20厘米﹐主动脉侧压与终压之差仅0。3毫米汞柱。大小动脉血流速逐步减慢﹐二者之差更小﹐侧压的位能比流动能量大得更多﹐因此血液的动能因素可以略而不计。
通常所说的血压即所测部位血管内的侧压。在静息状态下是适用的﹐但在剧烈运动时﹐心输出量大增﹐此时心脏收缩产生的动能便成为血流总能量不可忽视的组成部分。 心血管系统的压力梯度及其意义 心脏停搏时心血管系统存在的体循环平均压各部相等﹐没有压力梯度或压力差﹐因此血液不能流动。
只有在心搏正常﹐不断射出足够血量时才能推动血液流动。心血管系统各部血压高低不一﹐心室和主动脉血压最高﹐大型动脉与主动脉口径接近﹐阻力小﹐因克服阻力消耗的能量少﹐血压基本接近主动脉。以人为例,收缩压约120毫米汞柱﹐随着动脉逐步变细﹐阻力相应加大﹐血流为克服血管阻力消耗的能量相应加大,血压逐渐降低,小动脉﹐微动脉的口径变化最大﹐血压下降最为显著,收缩压由120毫米汞柱下降为60~70毫米汞柱。
毛细血管血压进一步下降为30~40毫米汞柱﹐微静脉﹑小静脉血压约10~20毫米汞柱﹐大型静脉血压约3~4毫米汞柱(约60~100厘米水柱),颈静脉接近胸腔处由于胸内负压的影响,血压接近于零(与大气压相等)。
胸腔内的颈静脉和锁骨下静脉﹑腔静脉的血压可以低于大气压成为负压﹐约-2~-5毫米汞柱。腹腔内大型静脉的血压较肠腔内的稍高﹐约100~120厘米水柱 (图2 人心血管系统各部的典型血压 )。由图可见动静脉系统有明显的压力梯度﹐正是这种压力梯度推动血液迅速流动由动脉而静脉再回到心脏。
肺循环也同样存在着压力梯度。一滴血在压力梯度的推动下流经各类血管的全程需时不过一分钟。可见心血管各部血压的压力梯度是血液循环流动的首要条件。
动脉血压的形成 心血管系统内血压的形成因素有﹕ 由心血管系统内充满血液而产生。
这在封闭型循环系统的动物最为明显。当这种动物心搏停止时﹐心血管系统各部仍有比大气压高 7毫米汞柱的血压。这种由于血液充满心血管系统的压力叫体循环平均压﹐是一种充盈压﹔ 由心脏的射血力产生。心搏周期心室肌收缩所释放的能量﹐一部分成为推动血液迅速流动的动能﹐另一部分转化为位能﹐表现为动脉血压﹐它使主动脉骤行扩张﹐存储部分输出血量成为心室舒张时继续推动血液流动的动力。
这使动脉系统无论在心脏的收缩期和舒张期都能保持稳定的血压来推动血液循环 。如果用T形动脉插管接动脉再连以测压计,则由T形管侧管测得的血压是该部的侧压﹐关闭侧管﹐将血压计与直管相连所测的血压为终端压。
终端压即侧压与血液流动动能之和的压力。等于1/2 ( 为血液密度﹐ 为血流速度)。人在静息时心输出量每分钟约5升,主动脉血流速度约每秒20厘米﹐主动脉侧压与终压之差仅0。3毫米汞柱。大小动脉血流速逐步减慢﹐二者之差更小﹐侧压的位能比流动能量大得更多﹐因此血液的动能因素可以略而不计。
通常所说的血压即所测部位血管内的侧压。在静息状态下是适用的﹐但在剧烈运动时﹐心输出量大增﹐此时心脏收缩产生的动能便成为血流总能量不可忽视的组成部分。 心血管系统的压力梯度及其意义 心脏停搏时心血管系统存在的体循环平均压各部相等﹐没有压力梯度或压力差﹐因此血液不能流动。
只有在心搏正常﹐不断射出足够血量时才能推动血液流动。心血管系统各部血压高低不一﹐心室和主动脉血压最高﹐大型动脉与主动脉口径接近﹐阻力小﹐因克服阻力消耗的能量少﹐血压基本接近主动脉。以人为例,收缩压约120毫米汞柱﹐随着动脉逐步变细﹐阻力相应加大﹐血流为克服血管阻力消耗的能量相应加大,血压逐渐降低,小动脉﹐微动脉的口径变化最大﹐血压下降最为显著,收缩压由120毫米汞柱下降为60~70毫米汞柱。
毛细血管血压进一步下降为30~40毫米汞柱﹐微静脉﹑小静脉血压约10~20毫米汞柱﹐大型静脉血压约3~4毫米汞柱(约60~100厘米水柱),颈静脉接近胸腔处由于胸内负压的影响,血压接近于零(与大气压相等)。
胸腔内的颈静脉和锁骨下静脉﹑腔静脉的血压可以低于大气压成为负压﹐约-2~-5毫米汞柱。腹腔内大型静脉的血压较肠腔内的稍高﹐约100~120厘米水柱 (图2 人心血管系统各部的典型血压 )。由图可见动静脉系统有明显的压力梯度﹐正是这种压力梯度推动血液迅速流动由动脉而静脉再回到心脏。
肺循环也同样存在着压力梯度。一滴血在压力梯度的推动下流经各类血管的全程需时不过一分钟。可见心血管各部血压的压力梯度是血液循环流动的首要条件。
动脉血压的形成 心血管系统内血压的形成因素有﹕ 由心血管系统内充满血液而产生。
这在封闭型循环系统的动物最为明显。当这种动物心搏停止时﹐心血管系统各部仍有比大气压高 7毫米汞柱的血压。这种由于血液充满心血管系统的压力叫体循环平均压﹐是一种充盈压﹔ 由心脏的射血力产生。心搏周期心室肌收缩所释放的能量﹐一部分成为推动血液迅速流动的动能﹐另一部分转化为位能﹐表现为动脉血压﹐它使主动脉骤行扩张﹐存储部分输出血量成为心室舒张时继续推动血液流动的动力。
这使动脉系统无论在心脏的收缩期和舒张期都能保持稳定的血压来推动血液循环 。如果用T形动脉插管接动脉再连以测压计,则由T形管侧管测得的血压是该部的侧压﹐关闭侧管﹐将血压计与直管相连所测的血压为终端压。
终端压即侧压与血液流动动能之和的压力。等于1/2 ( 为血液密度﹐ 为血流速度)。人在静息时心输出量每分钟约5升,主动脉血流速度约每秒20厘米﹐主动脉侧压与终压之差仅0。3毫米汞柱。大小动脉血流速逐步减慢﹐二者之差更小﹐侧压的位能比流动能量大得更多﹐因此血液的动能因素可以略而不计。
通常所说的血压即所测部位血管内的侧压。在静息状态下是适用的﹐但在剧烈运动时﹐心输出量大增﹐此时心脏收缩产生的动能便成为血流总能量不可忽视的组成部分。 心血管系统的压力梯度及其意义 心脏停搏时心血管系统存在的体循环平均压各部相等﹐没有压力梯度或压力差﹐因此血液不能流动。
只有在心搏正常﹐不断射出足够血量时才能推动血液流动。心血管系统各部血压高低不一﹐心室和主动脉血压最高﹐大型动脉与主动脉口径接近﹐阻力小﹐因克服阻力消耗的能量少﹐血压基本接近主动脉。以人为例,收缩压约120毫米汞柱﹐随着动脉逐步变细﹐阻力相应加大﹐血流为克服血管阻力消耗的能量相应加大,血压逐渐降低,小动脉﹐微动脉的口径变化最大﹐血压下降最为显著,收缩压由120毫米汞柱下降为60~70毫米汞柱。
毛细血管血压进一步下降为30~40毫米汞柱﹐微静脉﹑小静脉血压约10~20毫米汞柱﹐大型静脉血压约3~4毫米汞柱(约60~100厘米水柱),颈静脉接近胸腔处由于胸内负压的影响,血压接近于零(与大气压相等)。
胸腔内的颈静脉和锁骨下静脉﹑腔静脉的血压可以低于大气压成为负压﹐约-2~-5毫米汞柱。腹腔内大型静脉的血压较肠腔内的稍高﹐约100~120厘米水柱 (图2 人心血管系统各部的典型血压 )。由图可见动静脉系统有明显的压力梯度﹐正是这种压力梯度推动血液迅速流动由动脉而静脉再回到心脏。
肺循环也同样存在着压力梯度。一滴血在压力梯度的推动下流经各类血管的全程需时不过一分钟。可见心血管各部血压的压力梯度是血液循环流动的首要条件。
动脉血压的形成 心血管系统内血压的形成因素有﹕ 由心血管系统内充满血液而产生。
这在封闭型循环系统的动物最为明显。当这种动物心搏停止时﹐心血管系统各部仍有比大气压高 7毫米汞柱的血压。这种由于血液充满心血管系统的压力叫体循环平均压﹐是一种充盈压﹔ 由心脏的射血力产生。心搏周期心室肌收缩所释放的能量﹐一部分成为推动血液迅速流动的动能﹐另一部分转化为位能﹐表现为动脉血压﹐它使主动脉骤行扩张﹐存储部分输出血量成为心室舒张时继续推动血液流动的动力。
这使动脉系统无论在心脏的收缩期和舒张期都能保持稳定的血压来推动血液循环 。如果用T形动脉插管接动脉再连以测压计,则由T形管侧管测得的血压是该部的侧压﹐关闭侧管﹐将血压计与直管相连所测的血压为终端压。
终端压即侧压与血液流动动能之和的压力。等于1/2 ( 为血液密度﹐ 为血流速度)。人在静息时心输出量每分钟约5升,主动脉血流速度约每秒20厘米﹐主动脉侧压与终压之差仅0。3毫米汞柱。大小动脉血流速逐步减慢﹐二者之差更小﹐侧压的位能比流动能量大得更多﹐因此血液的动能因素可以略而不计。
通常所说的血压即所测部位血管内的侧压。在静息状态下是适用的﹐但在剧烈运动时﹐心输出量大增﹐此时心脏收缩产生的动能便成为血流总能量不可忽视的组成部分。 心血管系统的压力梯度及其意义 心脏停搏时心血管系统存在的体循环平均压各部相等﹐没有压力梯度或压力差﹐因此血液不能流动。
只有在心搏正常﹐不断射出足够血量时才能推动血液流动。心血管系统各部血压高低不一﹐心室和主动脉血压最高﹐大型动脉与主动脉口径接近﹐阻力小﹐因克服阻力消耗的能量少﹐血压基本接近主动脉。以人为例,收缩压约120毫米汞柱﹐随着动脉逐步变细﹐阻力相应加大﹐血流为克服血管阻力消耗的能量相应加大,血压逐渐降低,小动脉﹐微动脉的口径变化最大﹐血压下降最为显著,收缩压由120毫米汞柱下降为60~70毫米汞柱。
毛细血管血压进一步下降为30~40毫米汞柱﹐微静脉﹑小静脉血压约10~20毫米汞柱﹐大型静脉血压约3~4毫米汞柱(约60~100厘米水柱),颈静脉接近胸腔处由于胸内负压的影响,血压接近于零(与大气压相等)。
胸腔内的颈静脉和锁骨下静脉﹑腔静脉的血压可以低于大气压成为负压﹐约-2~-5毫米汞柱。腹腔内大型静脉的血压较肠腔内的稍高﹐约100~120厘米水柱 (图2 人心血管系统各部的典型血压 )。由图可见动静脉系统有明显的压力梯度﹐正是这种压力梯度推动血液迅速流动由动脉而静脉再回到心脏。
肺循环也同样存在着压力梯度。一滴血在压力梯度的推动下流经各类血管的全程需时不过一分钟。可见心血管各部血压的压力梯度是血液循环流动的首要条件。
更多资料,请百度 "mdsin麦森医疗"。收起