降幂:(1-cos2C)/2=(1-cos2A)/2+(1-cos2B)/2-sinAsinB,
cos2A+cos2B=cos2C+1-2sinAsinB,
化积:2cos(A+B)cos(A-B)=1+cos2C+[cos(A+B)-cos(A-B)],
(1-2cosC)cos(A-B)=2cos^C-cosC=-cosC(1-2cosC),
(1-2cosC)[cos(A-B)+cosC]=0,
2(1-2cosC)cos[(A+C-B)/2]cos[(A-(B+C))/2]=0,
2(1-2cosC)sinAsinB=0, ∴ cosC=1/2 ,C=60°。
。