分式的加减的公式
一)完全平方数的性质 一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如: 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,… 观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。 下面我们来研究完全平方数的一些常用性质: 性质1:完全平方数的末位数只能是0,1,4,5,6,9。 性质2:奇数的平方的个位数字为奇数,十位数字为偶数。 证明 奇数必为下列五种形式之一: 10a 1, 10a 3, 10a 5, 1...全部
一)完全平方数的性质 一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如: 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,… 观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。
下面我们来研究完全平方数的一些常用性质: 性质1:完全平方数的末位数只能是0,1,4,5,6,9。 性质2:奇数的平方的个位数字为奇数,十位数字为偶数。 证明 奇数必为下列五种形式之一: 10a 1, 10a 3, 10a 5, 10a 7, 10a 9 分别平方后,得 (10a 1)^2=100 20a 1=20a(5a 1) 1 (10a 3)^2=100 60a 9=20a(5a 3) 9 (10a 5)^2=100 100a 25=20 (5a 5a 1) 5 (10a 7)^2=100 140a 49=20 (5a 7a 2) 9 (10a 9)^2=100 180a 81=20 (5a 9a 4) 1 综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。 证明 已知m^2=10k 6,证明k为奇数。因为的个位数为6,所以m的个位数为4或6,于是可设m=10n 4或10n 6。
则 10k 6=(10n 4)^2=100 (8n 1)x10 6 或 10k 6=(10n 6)^2=100 (12n 3)x10 6 即 k=10 8n 1=2(5 4n) 1 或 k=10 12n 3=2(5 6n) 3 ∴ k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。 推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。 性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
这是因为 (2k 1)=4k(k 1) 1 (2k)=4 性质5:奇数的平方是8n 1型;偶数的平方为8n或8n 4型。 在性质4的证明中,由k(k 1)一定为偶数可得到(2k 1)是8n 1型的数;由为奇数或偶数可得(2k)为8n型或8n 4型的数。
性质6:平方数的形式必为下列两种之一:3k,3k 1。 因为自然数被3除按余数的不同可以分为三类:3m,3m 1, 3m 2。平方后,分别得 (3m)=9=3k (3m 1)=9 6m 1=3k 1 (3m 2)=9 12m 4=3k 1 同理可以得到: 性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m 1, 16m 4,16m 9。 除了上面关于个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。例如,256它的各位数字相加为2 5 6=13,13叫做256的各位数字和。
如果再把13的各位数字相加:1 3=4,4也可以叫做256的各位数字的和。下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止。
我们可以得到下面的命题: 一个数的数字和等于这个数被9除的余数。 下面以四位数为例来说明这个命题。 设四位数为,则 = 1000a 100b 10c d = 999a 99b 9c (a b c d) = 9(111a 11b c) (a b c d) 显然,a b c d是四位数被9除的余数。
对於n位数,也可以仿此法予以证明。 关於完全平方数的数字和有下面的性质: 性质9:完全平方数的数字之和只能是0,1,4,7,9。 证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而 (9k)=9(9) 0 (9k±1)=9(9±2k) 1 (9k±2)=9(9±4k) 4 (9k±3)=9(9±6k) 9 (9k±4)=9(9±8k 1) 7 除了以上几条性质以外,还有下列重要性质: 性质10:为完全平方数的充要条件是b为完全平方数。
证明 充分性:设b为平方数,则 ==(ac) 必要性:若为完全平方数,=,则 性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。 证明 由题设可知,a有质因数p,但无因数,可知a分解成标准式时,p的次方为1,而完全平方数分解成标准式时,各质因数的次方均为偶数,可见a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若 n^2 n-m 又因为89为质数, 所以:n m=89; n-m=1 解之,得n=45。代入(2)得。故所求的自然数是1981。
[例2]:求证:四个连续的整数的积加上1,等于一个奇数的平方(1954年基辅数学竞赛题)。 分析 设四个连续的整数为,其中n为整数。欲证 是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。
证明 设这四个整数之积加上1为m,则 m为平方数 而n(n 1)是两个连续整数的积,所以是偶数;又因为2n 1是奇数,因而n(n 1) 2n 1是奇数。这就证明了m是一个奇数的平方。 [例3]:求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题)。
分析 形如的数若是完全平方数,必是末位为1或9的数的平方,即 或 在两端同时减去1之后即可推出矛盾。 证明 若,则 因为左端为奇数,右端为偶数,所以左右两端不相等。 若,则 因为左端为奇数,右端为偶数,所以左右两端不相等。
综上所述,不可能是完全平方数。 另证 由为奇数知,若它为完全平方数,则只能是奇数的平方。但已证过,奇数的平方其十位数字必是偶数,而十位上的数字为1,所以不是完全平方数。 [例4]:试证数列49,4489,444889, 的每一项都是完全平方数。
证明 = = 1 =4 8 1 =4()(9 1) 8 1 =36 () 12 1 =(6 1) 即为完全平方数。 [例5]:用300个2和若干个0组成的整数有没有可能是完全平方数? 解:设由300个2和若干个0组成的数为A,则其数字和为600 3|600 ∴3|A 此数有3的因数,故9|A。
但9|600,∴矛盾。故不可能有完全平方数。 [例6]:试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同(1999小学数学世界邀请赛试题)。 解:设此数为 此数为完全平方,则必须是11的倍数。
因此11|a b,而a,b为0,1,2,9,故共有(2,9), (3,8), (4,7),(9,2)等8组可能。 直接验算,可知此数为7744=88。 [例7]:求满足下列条件的所有自然数: (1)它是四位数。
(2)被22除余数为5。 (3)它是完全平方数。 解:设,其中n,N为自然数,可知N为奇数。 11|N - 4或11|N 4 或 k = 1 k = 2 k = 3 k = 4 k = 5 所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。
[例8]:甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学邀请赛试题)? 解:n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十位数字是奇数。
如果完全平方数的十位数字是奇数,则它的个位数字一定是6。所以,的末位数字为6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元。 [例9]:矩形四边的长度都是小于10的整数(单位:公分),这四个长度数可构成一个四位数,这个四位数的千位数字与百位数字相同,并且这四位数是一个完全平方数,求这个矩形的面积(1986年缙云杯初二数学竞赛题)。
解:设矩形的边长为x,y,则四位数 ∵N是完全平方数,11为质数 ∴x y能被11整除。 又 ,得x y=11。 ∴∴9x 1是一个完全平方数,而,验算知x=7满足条件。又由x y=11得。
[例10]:求一个四位数,使它等于它的四个数字和的四次方,并证明此数是唯一的。 解:设符合题意的四位数为,则,∴为五位数,为三位数,∴。经计算得,其中符合题意的只有2401一个。 [例11]:求自然数n,使的值是由数字0,2,3,4,4,7,8,8,9组成。
解:显然,。为了便于估计,我们把的变化范围放大到,於是,即。∵,∴。 另一方面,因已知九个数码之和是3的倍数,故及n都是3的倍数。这样,n只有24,27,30三种可能。但30结尾有六个0,故30不合要求。
经计算得 故所求的自然数n = 27。 (四)讨论题 1。(1986年第27届IMO试题) 设正整数d不等于2,5,13,求证在集合{2,5,13,d}中可以找到两个不同的元素a , b,使得ab -1不是完全平方数。
2。求k的最大值。收起