暴急!!高二数学问题解答非等比数
1。Sn=(-1/4)·(An-1)^2
n=1时,A1=S1==(-1/4)·(A1-1)^2,(A1+1)^2=1,A1=-1
n≥2时,An=Sn-S(n-1)=(-1/4)·(An-1)^2-(-1/4)·[A(n-1)-1]^2,
(An)^2+2An=[A(n-1)]^2-2A(n-1),[An+A(n-1)][An-A(n-1)+2]=0,数列{An}不是等比数列,∴An+A(n-1)≠0,∴An-A(n-1)=-2
数列{An}是等差数列,∴An=1-2n
2。 bn=1/[n(3-an)]=1/[2n(n+1)]=(1/2)[1/n-1/(n+1)],
Tn=(1/2)...全部
1。Sn=(-1/4)·(An-1)^2
n=1时,A1=S1==(-1/4)·(A1-1)^2,(A1+1)^2=1,A1=-1
n≥2时,An=Sn-S(n-1)=(-1/4)·(An-1)^2-(-1/4)·[A(n-1)-1]^2,
(An)^2+2An=[A(n-1)]^2-2A(n-1),[An+A(n-1)][An-A(n-1)+2]=0,数列{An}不是等比数列,∴An+A(n-1)≠0,∴An-A(n-1)=-2
数列{An}是等差数列,∴An=1-2n
2。
bn=1/[n(3-an)]=1/[2n(n+1)]=(1/2)[1/n-1/(n+1)],
Tn=(1/2)[(1-1/2)+(1/2-1/2)+……+(1/n-1/(n+1)]=(1/2)[1-1/(n+1)]
Tn>m/32,(1/2)[1-1/(n+1)]>m/32,即mm/32总成立
。
收起