搜索
首页 教育/科学 理工学科 生物学

鸟的特点

请告诉我的特点。

全部回答

2004-09-11

0 0

    1.外形   身体呈流线型,适应飞翔生活。鸟体呈流线型,分为头、颈、躯干、尾和四肢五部分。头部小而圆,先端具啄食的喙,头两侧有一圆而大的眼,具眼睑和能活动的瞬膜,有保护眼球的作用。
  眼后有耳孔,其外周具耳羽,能收集声波。颈长而灵活,可弥补前肢变成翼后带来的不便。  躯干纺锤形,具流线型的外廓,可减少飞行时的阻力,增加飞行速度。尾部短小,末端着生扇形尾羽,飞翔时起舵的作用。
  前肢特化成翼,翼上着生飞羽,是飞翔器官。善飞的鸟类,翼和飞羽发达。后肢为足,足下部覆有鳞片或羽毛。足通常具四趾(第五趾退化),趾端有爪。一般是三趾向前,拇趾向后。  但也有退化成三趾或二趾的,如鸵鸟只具二趾。
     鸟类的喙和足的形态因种类不同而异,因此是鸟类分类的重要依据之一。   2.皮肤   皮肤薄而韧,着生羽毛。鸟类的皮肤薄而有韧性,便于飞翔时肌肉的剧烈运动。同时,除尾脂腺外,与爬行类一样缺乏皮肤腺。
    尾脂腺分泌的油脂,常被鸟用喙涂于羽毛上,有防止羽毛变形和水浸湿的作用。所以水禽类(如家鸭)的尾脂腺特别发达。   鸟类皮肤的又一特点是具有由表皮衍生的羽毛、喙、爪、鳞片等角质化物。
  而羽毛又是鸟类不同于其他各种动物的典型特征之一。羽毛有护体、保温和飞翔的作用。  根据羽毛的构造和功能不同,可分为正羽、绒羽和纤羽三种。   (1)正羽   正羽,又称翮羽。
  是覆盖体表的羽毛。由羽轴和羽片构成。羽轴下部称羽根,插入皮肤中,末端的小孔称下脐,羽根上端与羽交界处称上脐;由此处向内方丛生的散羽称副羽。羽轴上部称羽片,其两侧的羽片称?。  羽片由两侧的羽支和羽小支组成。
  羽小支上有许多羽小钩,把相邻的羽小支钩连起来,成为有弹性的羽片。若羽小支被外力分开,则鸟用喙啄梳后可重新钩连在一起。这就是鸟经常啄梳羽毛的原因。   (2)绒羽   绒羽又称ran,一般生于正羽之下。
  无羽干,羽根短,羽支柔软,丛生在羽根末端。  羽小支细长,不具钩,园此绒羽蓬松,形似棉绒,保温力很强。尤其是水禽类冬季的绒羽十分丰厚。      (3)纤羽   纤羽又称毛羽。
  形似毛发,有的末端着生少数羽支和羽小支。多生在鸟的口鼻部或散生于正羽、绒羽之间。   鸟类的羽毛着生于体表的一定部位,成为羽迹。  着生羽毛的地称羽区。不着生羽毛的地方称裸区。
  羽毛的这种分布,有利于飞时肌肉的剧烈运动。不会飞行的鸟类,如鸵鸟、企鹅等的羽毛则均匀布满全身,无羽区和裸区之分。鸟类羽毛的颜色多与栖息环境的颜色一致,起保护作用。   鸟类的羽毛需定期更换。
  通常是每年更换两次。一次在繁殖结束后更换的新羽,称冬羽;另一次在冬末春初更换的新羽,称婚羽。  换羽有利于迁徙、越冬和繁殖。除雁鸭类外,飞羽和尾羽的更换是逐渐进行的,故不影响鸟类的飞翔生活。
     3.骨骼   鸟类的骨骼轻便而坚固,适应于飞翔生活。为适应空中飞行的需要,鸟类的骨骼发生了许多特化。如骨骼轻便而坚固;大骨骼中有充满空气的孔隙;有的骨块合并;肢骨和带骨都有较大的变形等。
       (1)头骨   鸟类的头骨的一般结构与爬行类相似,但为适应飞翔生活的需要,发生明显的特化。头骨轻薄而坚固,各骨块间的界缝在成鸟已完全愈合,骨内有许多小孔,可被气囊充气。
  同时,上下颌骨极度前伸构成鸟喙。鸟喙外具角质鞘。形成锐利的切缘或短钩。这是鸟类的啄食器官,也是鸟类区别于所有脊椎动物特有的结构。  现代鸟类口中无齿,一般认为也是为减轻体重适应飞翔生活。
  并且由于脑颅和视觉器官的高度发达,改变了头颅的形状。颅腔膨大,使头骨顶部变成拱圆形;枕骨大孔移至腹面,这是鸟类对直立生活的一种适应。眼眶膨大,眼球特别发达,构成和强化了眶间隔这一特点。   (2)脊柱和胸骨   鸟类的脊柱由颈椎、胸椎、腰椎、荐椎和尾椎五部分组成。
    颈椎14枚,椎骨间的关节面呈马鞍形,称之为异凹形椎骨。这种特的连接方式,使椎骨间的活动十分灵活。鸟类的第一颈椎呈环状,称为寰椎;第二颈椎称为枢椎。寰椎与头骨一起可在枢椎上转动,大大提高了头部的活动范围。
  一般鸟类的头部可转动1800,猫头鹰的头部可转动2700。颈椎这种特殊的灵活性,是与鸟类前肢特化为翼和脊椎的其余部分大多愈合紧密相关的。     胸椎5~6枚,仅倒数第2枚能活动。
  前面数枚与最后一枚腰椎愈合,最后一枚胸椎与综荐骨(愈合的荐椎骨)合并。胸骨与硬骨质的肋骨相连。肋骨分背、腹两段,两段间有可动的关节;前几对肋骨的背段后缘有钩状突,压在后一对肋骨上,而腹段与胸骨相连,构成牢固的胸廓。
     善飞鸟类的胸骨十分发达,腹中线处有高耸的龙骨突起,从而增大了胸肌的附着面。  不善飞的种类如鸵鸟的胸骨则扁平。综荐骨是鸟类特有的结构。是由少数的胸椎、腰椎、荐椎和前几枚尾椎愈合而成的,又与宽大的骨盆(骼骨、坐骨和耻骨)相愈合,成为鸟类在地面行走时支持身体重量的坚强支架。
  鸟类的尾骨退化,最后几枚尾椎合并成一块支撑扇形尾羽的尾综骨。   鸟类脊椎骨的愈合和尾骨的退化,不仅使躯体的重心集中于身体中部,有利于保持飞翔时身体的平衡,而且又使骨架连接紧凑、牢固,能承受飞行时外界气流对身体的压力。
       (3)带骨和肢骨鸟类为适应飞翔生活,带骨和肢骨都发生了相应的变化。   肩带由肩甲骨、鸟喙骨和锁骨构成。三骨的连接处构成肩臼,与前肢的肱骨相关节。鸟喙骨强大,下端与胸骨相连。
  左右锁骨下在腹中线处联合成“V”字形,称之为叉骨。这是鸟类又一特有结构。  叉骨具弹性,避免了鸟类飞翔时翼在剧烈扇动过程中左右肩带的互相碰撞。前肢特化为翼,手骨(腕骨、掌骨、指骨)愈合或消失,使翼的骨骼构成一个整体。
  前肢的关节只能在翼的水平面上展开或褶合,有利于翼的扇动,这对鸟类的飞翔有很大意义。如鸟的翼骨折断了,则因翼不能正常扇动而失去了飞翔能力。  现化鸟类的指骨退化,使之大多无爪。
  鸟类手部着生的一列飞羽称初级飞羽;下臂部(尺骨)着生的一列飞羽称次级飞羽。它们的形状和数目,是鸟类分类的重要依据。   鸟类腰带的变形,是与后肢支持体重和产大型硬壳卵密切相关的。腰带由骼骨、坐骨和耻骨合并而成无名骨。
  无名骨宽大而薄,内侧与综荐骨愈合,外侧与后肢相关节。  左右无名骨不在腹中线处汇合连接,而是向侧后方伸展,构成开放式骨盆。这种特殊的结构与产大型硬壳卵相适应,并使后肢得到了强有力的支持。
     鸟类的后肢骨强健,股骨与髓臼相关节。后肢骨有较大的变化,腓骨退化成刺状,跗骨的上部与胫骨合并成一根胫跗骨,下部与?骨愈合一坎跗?骨。  这种简化成单一的骨块关节和胫跗骨、跗?骨的延长,能增加鸟类起飞、降落时的弹性。
  大多数鸟类具四趾(第五趾退化),拇趾后,余趾向前,以便树栖时握住树枝。鸟趾的形态和数目是其分类的又一重要依据。   4.肌肉   鸟类的胸肌发达,背部肌肉退化。其肌肉系统与其他脊椎动物一样,由骨骼肌(横纹肌)、内脏肌(平滑肌)和心肌组成。
    但为适应飞翔生活,一是主要肌肉集中在身体中部的腹侧,这对保持身体重心的稳定,维持飞行时的平衡有重要意义。其中使翼下降的胸大肌和上举的锁骨下肌最为发达,约占鸟体重量的1/5。
  这两块肌肉交替的张缩,两翼便上下扇动。后肢的肌肉也较发达,主要集中在股骨和胫骨上部。下部仅以肌腱与足趾相连。  其中贯趾屈肌自跗部以肌腱与趾端相连。当鸟栖于树枝时,由于体重的压力和腿部的弯曲,屈肌的肌腱收缩,足趾随之紧握树枝。
  所以鸟在树上睡觉时,不至从树上掉下来。   在鸟气管的下方还附有其独有的鸣肌。鸣肌的张缩使气管变形而发出各种悦耳的叫声。鸣肌在善叫的鸣禽类最为发达。  鸟类的皮下肌肉也较发达。
  皮下肌的收缩使羽毛竖立。由于胸椎以后的脊椎大多愈合,致使背部肌肉退化。   5.消化   鸟类消化方面的主要特点是具肌胃(砂囊),消化能力强。现存鸟类虽然口内无齿,但鸟喙外面和绝大多种类的舌上被有角质鞘。
  口腔分泌的唾液仅能拌润食物,只有以谷物为食的雀形目的唾液中才具消化酶,有消化作用。  鸟类中以雨燕目的唾液腺最发达,它们用唾液把海藻、苔藓等粘合造巢。金丝燕的窝巢即为我国有名的滋补药物——燕窝。
     鸟类食道细长。食鱼和食谷的种类(如鱼鹰、家鸡)食道下部膨大成的嗉裹,有临时贮存和软化食物的作用。雌鸽在育雏期间,嗉裹能分泌“鸽乳”喂养幼鸽;鸬鹚和鹈鹕能在嗉裹内制成食糜喂养幼鸟。     鸟类的胃分为腺胃和肌胃两部分。
  腺胃壁薄,内有丰富的消化腺,能分泌大量的消化液消化食物;肌胃外壁为发达的肌肉层,内壁为坚硬的角质层。肌胃内有鸟啄食的砂粒。在肌肉层的作用下,角质层与砂粒一起把食物磨碎。实验证明,肌胃内有砂粒的家鸡,对谷物或种子的消化能力可提高十倍。
       鸟类的小肠很细长,在大、小肠交界处有一盲肠。盲肠有吸收水分和消化粗纤维的功能。以植物纤维为主食的种类(鸡类)的盲肠尤为发达。直肠粗短,末端开口于泄殖腔。由于直肠粗短,不能多贮粪便,故排便频繁。
  这也能减轻体重,利于飞翔。其主要消化腺仍是肝脏和胰脏。分泌的消化液都注入十二指肠。     鸟类消化功能上的特点是消化力强,消化速度快。这是鸟类食量大,整天频频进食的原因。
  如雀形目的鸟类一天所吃的食物约为体重的10~30%;雀鹰一天的进食量约为体重的33~66%。鸟类极强的消化能力是与其飞翔时高能量的消耗相适应的。   6.呼吸   特具气囊,进行双重呼吸。
    鸟类为满足飞行时高氧、高能量消耗的需要,呼吸系统特化为由以肺为主的气管网和气囊组成。气囊是与气管相通的盲状膜质裹。是鸟体内独具的贮气和冷却装置,是进行双重呼吸的重要器官。
  鸟肺是一个由大量相互连通的毛细支气管组成的缺乏弹性的海绵体。毛细支气管与次级、初级(中支气管)、支气管和气管组成复杂的气管网络。  毛细支气管表面布满了毛细血管。气体交换就在毛细支气管壁与毛细血管壁之间进行。
  这样鸟肺无论在体积上或呼吸效能上都大大超过了爬行类。   鸟类的气囊是由初级、次级支气管伸出肺外部分的末端膨大后形成的盲状膜质囊。它分布于鸟体的各组织器官间。大型的气囊共有9个,其中位于体前部为次级支气管形成的称前气囊;位于体后部为初级支气管形成的称后气囊。
    气囊除具贮存空气、协助鸟体完成双重呼吸的主要功能外,还能减轻鸟体飞行时的比重,减少肌肉以及内脏间的磨擦,并能散发飞行时产生的大量热能,对调节、恒定鸟类飞翔时的体温起了重要作用。
  有人计算一只飞行的家鸽,吸入的空气的3/4用于散发飞行时的热量。   鸟休止时,呼吸运动同其他陆栖脊椎动物一样,是靠肋骨的升降,胸骨的上下移动以改变胸腔的容积来完成的。  但飞行时,由于胸骨是扇翅肌(胸肌)固着的地方和支撑点,不能上下移动,国而剧烈的呼吸运动主要靠随着扇翅节律引起的气囊张缩来完成。
  鸟飞行时,当翅扬起时,气囊扩张,由于鸟体内外气压不平衡,一部分空气沿初级支气管迅速进入后气囊。这部分空气未经肺内进行气体交换,所以是富氧的。  另一部分空气同时进入肺,在毛细支气管处直接进行气体交换;当翅扇下时,肺内经过气体交换的空气经前气襄排出体外,与此同时,后气囊受压收缩,将贮存的富氧空气压入肺,在肺内再次进行气体交换。
  固此,鸟体无论在吸气或呼气时肺内均能进行气体交换。这种呼吸现象称为双重呼吸。由此可见,气囊的出现和双重呼吸作用的产生是鸟类对飞翔生活的极好适应,保证了鸟飞行时剧烈呼吸运动的顺利完成,从而也保证了鸟飞行时对高能、高氧消耗的需要和体温的恒定。
       鸟类的鸣管是其特化的发音器官。它位于气管与支气管交界的地方。此处气管内外壁变薄,称之为鸣膜。鸣膜能因气流而振动发音。鸣禽类的鸣肌、鸣膜都很发达,加上鸟类特有的双重呼吸作用,使之不论在呼气或吸气时都能发出多变悦耳的叫声。
  这与其他陆栖脊椎动物的发音器官位于气管上端,且绝大多数只能呼气时发音是完全不同的。  7.循环鸟类有完善的双循环系统,富氧血与缺氧血完全分开。鸟类的血液循环系统在爬行类不完善双循环体系的基础上有了进一步的发展,成为完善的双循环体系,使富氧血与缺氧血完全分开。
  同时心脏的容量大,心率快,血压高,血液循环迅速。这些特点是与鸟类旺盛的新陈代谢和飞翔时剧烈运动相适应的。     7.循环    鸟类有完善的双循环系统,富氧血与缺氧血完全分开   (1)心脏   鸟类心脏的相对大小居脊椎动物的首位,约为体重的0.4~1.5%。
  心脏分为完全的四腔,左房室孔间具二尖瓣,右房室孔间具肌肉瓣。二尖瓣和肌肉瓣都有防止血液倒流的作用。  同时低等脊椎动物心脏的静脉窦已完全消失。来自体静脉的血液,经右心房、右心室而由肺动脉入肺。
  在肺内经过气体交换,含氧丰富的血液经肺静脉回心注入左心房,再经左心室压入右体动脉弓至鸟体全身。鸟类的心跳频率比哺乳类快得多,一般约在300~500次/分钟之间。动脉压较高,如家鸡在22~25kPa,故血液流通快。
       (2)动脉   鸟类的动脉系统似爬行类,只是左体动脉弓消失,左心室压出的血液由右体动脉弓输送至全身。   (3)静脉   鸟类的静脉系统也似爬行类,所不同的是:一是肾门静脉趋于退化。
  自尾部来的静脉血只有小部分入肾,大部分经后大静脉回心。  近年报道,鸟类的肾门静脉内也有一块独特的瓣膜,可根据需要控制进入肾门静脉的血量。二是独具尾肠系膜静脉。它可收集内脏血液进入肝门静脉。
       (4)血液和淋巴   鸟类血液中的红细胞含量较哺乳类少。红细胞具核,通常为卵圆形。含有大量的血红蛋白,担负着输送氧和二氧化碳的任务。     鸟类的淋巴系统包括淋巴管、淋巴结、淋巴小结、腔上囊、胸腺和脾脏等。
  鸟类的淋巴管比哺乳类少,最终汇成一对大的胸腺管进入前腔静脉。淋巴结位于淋巴管的通路上,至今只发现少数种类有淋巴结。腔上囊是鸟类特有的一个中心淋巴器官,是位于泄殖腔背面的一个盲状囊,在抗原的刺激下,可产生抗体。
    胸腺也是重要的淋巴器官,幼体发达,成体退化,脾赃位于腺胃与肌胃交界处的背侧,具产生淋巴球、单核球和回收血红素及铁质的功能。   8.排泄   鸟类的膀胱消失,尿随粪便排出。
  鸟类具一对三叶的肾脏。相对体积比哺乳类大,可占体重的2%以上;肾小球的数目多,比哺乳类多2倍左右。  但无膀胱,肾脏经输尿管开口于泄殖腔。这对于鸟类旺盛的新陈代谢过程中产生大量废物而又需迅速排出体外,保持体内水盐平衡以及减轻体重等都极为有利。
     鸟尿的主要成分一般认为是尿酸而不是尿素。尿酸不象尿素那样易溶于水,常呈半凝固的白色结晶。这对于胚胎在卵壳内发育阶段中不断排除废物和减少水分散失都是有利的。  加之肾小管和泄殖腔都有重吸收水分的功能,所以鸟类排尿时失水极少。
  由于鸟类无膀胱和直肠很短,故鸟尿随其粪便频频排出体外。这也是鸟类为减轻体重,适应飞翔生活的需要。近年有报道,鸟尿含有多种成分,主要成分不是尿酸。到底鸟尿(鸟粪的白色部分)的主要成分是什么?有待进一步研究。
       海鸟除靠肾脏排尿以外,还靠位于眼眶上部的盐腺(分泌比鸟尿浓度更大的氯化物的腺体),能把随海水进入体内过多的盐分排出体外,以维持正常的渗透压。   9.神经系统和感觉器官   鸟类的神经系统和感觉器官比爬行类有较大的进步,大脑纹状体高度发达,嗅叶退化。
          (1)脑及脑神经   鸟脑的体积较大,在脊椎动物中仅次于哺乳类。大脑的纹状体除有爬行类开始出现的新纹状体外,还增加了上纹状体,使整个大脑的体积增加。
  上纹状体是鸟类复杂行为(营巢、孵卵、育雏)和“智慧”的中枢。间脑由上丘脑、丘脑和下丘脑组成。  下丘脑是体温调节和节制植物神经系统的中枢。中脑充满了视神经,其背侧形成一对发达的视叶,所以鸟类的视觉高度发达。
  小脑也较发达,体积增大,由蚓状体、左、右小脑鬈组成。小脑发达与鸟类飞翔时复杂运动的协调和保持身体的平衡相适应。脑神经12对。第11对不发达,1965年才证实了它的存在,结束了多年来对此的争论。
       (2)感觉器官   鸟类的感觉器官中以视觉最发达,听觉次之,嗅觉退化   1)视觉:鸟类的视觉高度发达。鸟眼的相列大小也居脊椎动物的首位。外形扁圆,适于远视。
  瞬膜发达,可覆盖眼球,有保护、润湿和清洁角膜的功能。在巩膜前具呈覆瓦状排列的薄片形巩膜骨,有支持眼球的功能,可防止鸟在空中飞行时因强大的气流压力引起眼球变形。  鸟眼内的睫状肌、角膜调节肌和环肌有双重调节作用。
  即不仅能改变水晶体的形状和水晶体与角膜的距离,而且能改变角膜的凸度和水晶体与视网膜的距离。由于鸟类具此双重调节机制,使鸟眼在一瞬间能由远视的“望远镜”变为近视的“显微镜”。这是鸟在飞行中定向、寻食、避敌所必需的。
  故高度发达的视觉是鸟类对空中飞翔生活的又一适应。  如鹰在高空飞行时,能清晰地看清地面的小鼠,并能在几秒钟内俯冲下来准确的抓住小鼠。   2)嗅觉:鸟类的嗅觉一般均退化。
  但兀骛等少数种类也相当发达,成为它寻食的定位器官。   3)听觉:鸟类的听觉器官似爬行类。只是内耳的瓶状体比爬行类长,耳孔外周多具耳羽,可收集声波。  夜间活动的种类如夜鹰的听觉器官也较发达。
     10.生殖   雌鸟的右侧卵巢退化,产大型硬壳卵,并有一系列育雏的复杂行为以及生殖腺的活动有着明显的季节变化是鸟类在生殖方面的特点。这些特点通常也认为是鸟类适应飞翔生活的结果。
     雄鸟的生殖系统似爬行类,具成对的睾丸和输精管。  除少数种类如雁鸭类外都不具交配器官。是借雌、雄泄殖腔的互相吻合而受精的。雌鸟仅左侧的卵巢和输卵管发达,右侧的退化。
  一般认为与其产大型硬壳卵有关。成熟的卵逐个通过输卵管前端的喇叭口进入输卵管,在其上端与精子结合受精。受精卵在管内下行的过程中,依次被管壁分泌的蛋白、壳膜、卵壳包裹。  卵壳表面有数千个小孔,保证了以后卵被孵化时与外界进行气体交换。
  很多鸟类的卵壳表面有各种颜色,这是输卵管下端管壁的色素细胞在产卵前5小时左右分泌的色素形成的。卵最后借泄殖腔壁肌肉的收缩排出体外。此外,鸟类还具有孵卵、寻食喂养幼鸟等一系列育雏的本能,使之后代有较高的成活率。
       人们根据刚孵出来的雏鸟发育程度的不同,把雏鸟分成早成鸟和晚成鸟两类。凡是刚孵出的雏鸟身上长满了羽毛,张开了眼,羽毛干后就能站立、啄食的,称早成鸟,如小鸡、小鸭等。
  凡是刚孵出的雏鸟身上无羽毛,眼没张开,不能站立、啄食,必须留在巢内由亲鸟喂养的。称晚成鸟,如麻雀、家燕等。  雏鸟是早成鸟还是晚成鸟,也是分类的一个依据。   11.迁徒   迁徙是部分鸟类在长期演化过程中形成的本能行为。
  是它们对外界不良生活环境进行的一种生存适应现象。如家燕每年春夏从炎热、潮湿的南方迁飞到我国繁殖,秋末又迁回温暖的南方越冬。就是家燕适应不良生活环境的一种本能行为表现。  这样我国就成为家燕的繁殖区,南方成为它的越冬区。
  象家燕这样的鸟类,每年在繁殖区与越冬区之间,进行有规律地、周期性地的迁飞现象,叫做迁徙。据此,人们通常把鸟类分成候鸟和留鸟两大类。凡有迁徙习性的鸟类,称之为候鸟,如家燕、大雁等。凡无迁徙习性的鸟类,称之为留鸟,如麻雀等。
       鸟类迁徙的原因是多种因素综合作用的结果,而季节变化(即光照、温度、湿度等变化)引起鸟类所需食物的变化则是导致鸟类迁徙的直接原因。我国春夏之季,气候温和,湿润,食物丰富,适宜鸟类繁殖,所以家燕才从炎热、潮湿的南方迁飞到我国繁殖;而到了秋冬季,气温下降,空气干燥,食物减少,因而家燕又迁回气候变得温暖、湿润,食物增多的南力越冬。
    由此可见,食物随季节变化是部分鸟类迁徙的直接原因。   有无迁徙习性,即是候鸟还是留鸟,也是鸟类分类的依据之一。

2004-09-11

619 0

    你是说鸟的特征吧。 鸟纲的主要特征如下,希望对你有帮助:) 鸟类是体表被覆羽毛、有翼、恒温和卵生的高等脊椎动物。从生物学观点来看,鸟类最突出的特征是新陈代谢旺盛,并能在空气中飞行,这也是鸟类与其他脊椎动物的根本区别,使其在种数(9千余种)上成为仅次于鱼类,遍布全球的脊椎动物。
     鸟类起源于爬行类,在躯体结构和功能方面有很多类似爬行类的特征,以至有人曾把它们归入蜥形类。但是鸟类同爬行类的根本区别,在于有以下几方面的进步性特征: 1.具有高而恒定的体温(约为37.0℃~44.6℃),减少了对环境的依赖性。
   2.具有迅速飞翔的能力,能借主动迁徙来适应多变的环境条件。   3.具有发达的神经系统和感官,以及与此相联系的各种复杂行为,能更好地协调体内外环境的统一。 4。具有较完善的繁殖方式和行为(造巢、孵卵和育雏),保证了后代有较高的成活率。
   学习鸟类的躯体结构和功能,应以上述内容作为线索,在注意总结鸟类与爬行类相近似的特征以及鸟类的进步性特征的基础上,重点归纳鸟类由于适应飞翔的生活方式,在躯体结构、功能以及生活方式方面所引起的特化。
     一、恒温及其在动物演化史上的意义 鸟类与哺乳类都是恒温动物,这是动物演化历史上的一个极为重要的进步性事件。恒温动物具有较高而稳定的新陈代谢水平和调节产热、散热的能力,从而使体温保持在相对恒定的、稍高于环境温度的水平。
  这与无脊椎动物以及低等脊椎动物(鱼类、两栖类、爬行类)有着本质的区别,后者称为变温动物。  变温动物的热代谢特征是:新陈代谢水平较低、体温不恒定,缺乏体温凋节的能力。 高而恒定的体温,促进了体内各种酶的活动、发酵过程,使数以千计的各种酶催化反应获得最大的化学协凋,从而大大提高了新陈代谢水平。
  根据测定,恒温动物的基础代射率至少为变温动物的6倍。有人把恒温动物比喻为一个活的发酵桶,以说明它对促进热能代谢方面的意义。  在高温下,机体细胞(特别是神经和肌肉细胞)对刺激的反应迅速而持久,肌肉的粘滞性下降,因而肌肉收缩快而有力,显著提高了恒温动物快速运动的能力,有利于捕食及避敌。
  恒温还减少了对外界环境的依赖性,扩大了生活和分布的范围,特别是获得在夜间积极活动(而不像变温动物那样,一般在夜间处于不活动状态)的能力和得以在寒冷地区生活。  有人认为,这是中生代哺乳类之所以能战胜在陆地上占统治地位的爬行类的重要原因。
   恒温动物的体温均略高于环境温度,这是由于在冷环境温度下,有机体散热容易。在低于环境温度下生活,会引起“过热”而致死。但恒温动物的体温又不能过高,这除了能量消耗因素以外,很多蛋白质在接近50℃时即变性。
     恒温是产热和散热过程的动态平衡。产热与散热相当,动物体温即可保持相对稳定;失去平衡就会引起体温波动,甚至导致死亡。鸟类与哺乳类之所以能迅速地调整产热和散热,是与具有高度发达的中枢神经系统密切相关的。
  体温调节中枢(丘脑下部)通过神经和内分泌腺的活动来完成协调。  由此可见,恒温是脊椎动物躯体结构和功能全面进化的产物。产热的生物化学机制的基本过程是,脊椎动物的甲状腺素作用于肌肉、肝和肾脏,激活了与细胞膜相结合的、依赖于Na+、K+的ATP(腺苷三磷酸)酶,使ATP分解而放出热量。
   恒温的出现,是动物有机体在漫长的发展过程中与环境条件对立统一的结果。  根据近年来的大量实验证实,即使是变温动物,其中的个别种类也可通过不同的产热途径来实现暂时的、高于环境温度的体温。
  例如,以遥测技术探知,某些快速游泳的海产鱼类(一些金枪鱼及鲨鱼),通过特殊的产热肌肉群的收缩放热,以及复杂的血液循环通路(使血液中所含有的高代谢热量,不致因血液流经鳃血管而散失于水中),从而获得高于水温的体温。
    将一条蓝鳍鲔长距离放流遥测表明,当水温在10℃变化范围(14℃-5℃)的情况下,胃内温度仍可稳定在18℃左右,一种高山蜥蜴在接近冰点的稀薄冷空气下,测得体温为 31℃,这是借皮肤吸收太阳的辐射热而提高体温的。
  一种印度蟒蛇,雌者可借躯体肌肉的不断收缩而产热(比环境温度高7℃)从而把所缠绕的卵孵出。  这些事实再一次证实“一切差异都在中间阶段融合,一切对立都经过中间环节而互相过渡”。
   二、鸟纲的躯体结构 (一)外形 鸟类身体呈纺锤形,体外被覆羽毛,具有流线型的外廓,从而减少了飞行中的阻力。头端具角质的喙,是啄食器官。喙的形状与食性有密切关系。颈长而灵活,尾退化、躯干紧密坚实、后肢强大,这些都是与飞行生活方式密切相关的:躯干坚实和尾骨退化有利于飞行的稳定;颈部发达可弥补前肢变成翅膀后的不便;眼大,具眼睑及瞬膜可保护眼球。
    瞬膜是一种近于透明的膜,能在飞翔时遮覆眼球,以避免干燥气流和灰尘对眼球的伤害。鸟类瞬膜内缘具有一种羽状上皮,在地栖性的鸟类(如鸽与雉鸡)尤为发达,能借以刷洗灰尘;水禽及猛禽则很少 耳孔略凹陷,周围着生耳羽,有助于收集声波。
  夜行性鸟类(如猫头鹰)的耳孔极为发达。 前肢变为翼,后肢具4趾,这是鸟类外形上与其他脊椎动物不同的显著标志。  拇趾通常向后,适于树栖握枝。鸟类足趾的形态与生活方式有密切关系。
   尾端着生有扇状的正羽,称为尾羽,在飞翔中起着舵的作用。尾羽的形状与飞翔特点有关。 (二)皮肤 鸟类皮肤的特点是薄、松而且缺乏腺体。薄而松的皮肤,便于肌肉剧烈运动。鸟类的皮肤缺乏腺体,这与爬行类颇为相似。
    鸟类唯一的皮肤腺称尾脂腺,它能分泌油质以保护羽毛不致变形,并可防水,因而水禽(鸭、雁等)的尾脂腺特别发达。但有些种类(例如鸸鹋、鹤鸵、鸨及鹦鹉等)则不具。它的分泌物是一种类脂物,可能还含有维生素I)。
  最近关于尾脂腺的化学成分在分类学上的意义问题,已引起学术界的重视。  也有人报道,在鸡、鸽和鹌鹑的皮肤里,含有大量的能分泌脂肪的单个细胞。鸟类外耳道的表皮能分泌一种蜡质物,其中含有脱鳞细胞。
   鸟类的皮肤外面具有由表皮所衍生的角质物,如羽毛、角质喙、爪和鳞片等。一些鸟类的冠及垂肉,为加厚的、富于血管的真皮所构成,其内富有动静脉吻合结构。   羽毛着生在体表的一定区域内,成为羽迹,这些地方称为羽区。
  不着生羽毛的地方称裸区(图示)     羽毛的这种着生方式,有利于剧烈的飞翔运动。鸟类腹部的裸区,还与孵卵有密切关系;雌鸟在孵卵期间,腹部羽毛大量脱落,称“孵卵斑”。根据这个特点可判断在野外所采集的鸟类是否已进入繁殖期。
    羽衣的主要功能是:①保持体温,形成隔热层。通过附着于羽基的皮肤肌,可改变羽毛的位置,从而调节体温;②构成飞翔器官的一部分——飞羽及尾羽;③使外廓更呈流线型,减少飞行时的阻力;④保护皮肤不受损伤。
  羽色还可成为一些鸟类(如地栖性鸟类及大多数孵卵雌鸟)的保护色。 根据羽毛的构造和功能,可分以下几种: 1.正羽,又称翮羽,为被覆在体外的大型羽片。  翅膀及尾部均着生有一列强大的正羽,分别称为飞羽和尾羽。
  飞羽及尾羽的形状和数目,是鸟类分类的依据之一。正羽由羽轴和羽片所构成。羽轴下段不具羽片的部分称为羽根,羽根深插入皮肤中。羽片是由许多细长的羽枝所构成。羽枝两侧又密生有成排的羽小枝。羽小枝上着生钩突或节结,使相邻的羽小枝互相钩结起来,构成坚实而具有弹性的羽片,以??动空气和保护身体(图示)由外力分离开的羽小枝,可借鸟喙的啄梳而再行钩结。
    鸟类经常啄取尾脂腺所分泌的油脂,于啄梳羽片时加以涂抹,使羽片保持完好的结构和功能。 2.绒羽位于正羽下方,呈棉花状,构成松软的隔热层。绒羽在水禽特别发达,有重要经济价值的鸭绒就是这种羽毛。
  绒羽的结构特点是羽轴纤弱,羽小枝的钩状突起不发达,因而不能构成坚实的羽片。  幼雏的绒羽不具小枝(图示)     3.纤羽,又称毛状羽,外形如毛发,杂生在正羽与绒羽之中。
  在拔掉正羽与绒羽之后可见到(图示)。纤羽的基本功能为触觉。 鸟类羽毛是表皮细胞所分生的角质化产物,在系统进化上与爬行类的角质鳞片是同源的,有一种假说认为,鸟类的爬行类祖先在朝着适应于飞翔生活方式的进化过程中,角质鳞片逐渐增大延伸,然后劈裂成枝,即成羽毛。
     从个体发育可见,羽毛最初源于由真皮与表皮所构成的羽乳头。随着羽乳头的生长,其表层形成许多纵行的角质羽柱,即为未来的羽枝。随后,位于背方的羽柱发育迅速,为未来的羽茎;羽茎两侧的羽柱随羽茎的生长而移至其两侧排列,即为羽枝,由它们构成羽片(图示)。
       鸟类的嘴缘及眼周大多具须,为一种变形的羽毛,仅在羽干基部有少数羽支或不具羽支,有触觉功能。   鸟类的羽毛是定期更换的,称为换羽。通常一年有两次换羽:在繁殖结束后所换的新羽称冬羽。
  冬季及早春所换的新羽称夏羽或婚羽。换羽的生物学意义在于有利于完成迁徒、赵冬及繁殖过程。甲状腺的活动是引起换羽的基础,在实践中注射甲状腺素或饲以碎甲状腺,能引起鸟类脱羽。 飞羽及尾羽的更换大多是逐渐更替的,使换羽过程在不影响飞翔力的情况下进行。
    但雁鸭类的飞羽更换则为一次全部脱落。在这个时期内丧失飞翔能力,隐蔽于人迹罕至的湖泊草丛中。在研究雁鸭类迁徙的工作中,常利用这个时机张网捕捉,进行大规模的环志工作。对于繁殖期及换羽期的雁鸭类,应严禁滥捕。
   (三)骨骼 鸟类适应于飞翔生活,在骨骼系统方面有显著的特化,主要表现在:骨骼轻而坚固,骨骼内具有充满气体的腔隙,头骨、脊柱、骨盘和肢骨的骨块有愈合现象,肢骨与带骨有较大的变形(图示)。       1。
  脊柱及胸骨脊柱由颈椎、胸椎、腰椎、荐椎及尾椎五部分组成。颈椎数目变异较大,从8枚(一些小型鸟类)至 25枚(天鹅)不等,家鸽为14枚,鸡为16~17枚。颈椎椎骨之间的关节面呈马鞍形,称异凹型椎骨。
  这种特殊形式的关节面使椎骨间的运动十分灵活。  此外,鸟类的第一枚颈椎呈环状,称为寰椎;第二枚颈椎称为枢椎。与头骨相联结的寰椎,可与头骨一起在枢椎上转动,这就大大提高了头部的活动范围。
  鸟类头部运动灵活,转动范围可达180°,猫头鹰甚至可转270°。颈椎具有这种特殊的灵活性,是与前肢变为翅膀和脊柱的其余部分大多愈合密切相关的。   胸椎5~6枚。借硬骨质的肋骨与胸骨联结,构成牢固的胸廓。
  鸟类的肋骨不具软骨,而且借钩状突彼此相关连,这与飞翔生活有密切联系:胸骨是飞翔肌肉(胸肌)的起点,当飞翔时体重是由翅膀来负担,因而坚强的胸廓对于保证胸肌的剧烈运动和完成呼吸,是十分必要的。鸟类胸骨中线处有高耸的龙骨突,以增大胸肌的固着面。
    在不善飞翔的鸟类(如鸵鸟),胸骨扁平。 愈合荐骨(综荐骨)是鸟类特有的结构。它是由少数胸椎、腰椎、荐椎以及一部分尾椎愈合而成的,而且它又与宽大的骨盘(髂骨、坐骨与耻骨)相愈合,使鸟类在地面步行时获得支持体重的坚实支架。
  鸟类尾骨退化,最后几枚尾骨愈合成一块尾综骨,支撑扇形的尾羽。  鸟类脊椎骨骼的愈合以及尾骨退化,就使躯体重心集中在中央,有助于在飞行中保持平衡。 2.头骨 鸟类头骨的一般结构与爬行类相似,例如,具有单一的枕骨髁、化石鸟类尚可见头骨后侧有双颞窝的痕迹、听骨由单一的耳柱骨所构成以及嵴底型脑颅等。
  但它适应于飞翔生活所引起的特化是非常显著的,主要表现在: (1)头骨薄而轻。  各骨块间的缝合在成鸟的颅骨已愈合为一个整体,而且骨内有蜂窝状充气的小腔。这就解决了轻便与坚实的矛盾。
   (2)上下颌骨极度前伸,构成鸟喙。这是鸟类区别于所有脊椎动物的结构。鸟啄外具角质鞘,构成锐利的切缘或钩,是鸟类的取食器官。现代鸟类均无牙齿,通常认为这也是对减轻体重(牙齿退化连同咀嚼肌肉不发达)的适应。
     (3)脑颅和视觉器官的高度发达,在颅型上所引起的改变:颅腔的膨大,使头骨顶部呈圆拱形,枕骨大孔移至腹面。眼眶的膨大,使这一区域的脑颅侧壁被压挤至中央(因而将脑颅腔后推),构成眶间隔。
  眶间隔在某些爬行类即已存在,但鸟类由于眼球的特殊发达,从而更强化了这个特点(图示)。       3.带骨及肢骨 鸟类带骨和肢骨也有愈合及变形现象,这也是对特殊生活方式的适应。
   肩带由肩胛骨、乌喙骨和锁骨构成。三骨的联结处构成肩臼,与翼的肱骨相关节。鸟类的左右锁骨以及退化的间锁骨在腹中线处愈合成“V”形,称为叉骨,是鸟类特有的结构。叉骨具有弹性,在鸟翼剧烈??动时可避免左右肩带(主要是乌喙骨)碰撞。
    前肢特化为翼,主要表现在手部骨骼(腕骨、掌骨和指骨)的愈合和消失现象,使翼的骨骼构成一个整体,??翅才能有力。由于指骨退化,现代鸟类大都无爪(图示)。     少数种类,例如南美的麝雉的幼鸟指上尚具2爪,用于攀缘。
  鸟类手部(腕、掌骨及指骨)所着生时一列飞羽称初级飞羽,下臂部(尺骨)所着生的一列飞羽称次级飞羽。  飞羽是飞翔的主要羽毛,它们的形状和数目(特别是初级飞羽)是鸟类分类学的重要依据(图示)。
       鸟类腰带的变形,与用后肢支持体重和产大型具硬壳的卵有密切关系。腰带(髂骨、坐骨及耻骨)愈合成薄而完整的骨架,其髂骨部分并向前后扩展,与愈合荐骨相愈合,这就使后肢得到强有力的支持。
    耻骨退化,而且左右坐骨、耻骨不像其他陆生脊椎动物那样在腹中线处相汇合联结,而是一起向侧后方伸展,构成所谓“开放式骨盘”,这是与产生大型硬壳卵有密切关系的。然而在极少数陆栖原始种类(例如鸵鸟),左右耻骨或坐骨在腹中线处尚有联合现象。
  鸟类的后肢强健,股骨与腰带的髋臼相关节。  下腿骨骼有较大变化:腓骨退化成刺状;相当于一般四足动物的胫骨,与其相邻的一排退化的跗骨相愈合,构成一细长形的腿骨,称为胫跗骨,远端一排的退化跗骨与其相邻的跖骨相愈合,构成一块细长形的足骨,称为跗跖骨。
  这种简化成单一的(胫跗骨及跗跖骨)骨块关节以及这两块骨骼的延长,能增加起飞和降落时的弹性。  大多数鸟类均具4趾,拇趾向后,以适应于树栖握枝(图示)。     鸟趾的数目及形态变异是鸟类分类学的依据。
   (四)肌肉 鸟类的肌肉系统与其他脊椎动物一样,是由骨骼肌(横纹肌)、内脏肌(平滑肌)和心肌组成。鸟类由于适应于飞翔生活,在骨骼肌的形态结构上有显著改变、这些改变主要可归结为: 1.由于胸椎以后的脊柱的愈合,而导致背部肌肉的退化。
    颈部肌肉则相应发达。 2.使翼扬起(胸小肌)及下??(胸大肌)的肌肉十分发达(占整个体重的1/5),它们的起点均附着在胸骨上,通过特殊的联结方式而使翼??动(图示)。
       此外,不论是支配前肢及后肢运动的肌肉,其肌体部分均集中于躯体的中心部分,而是以伸长的肌腱来“远距离”操纵肢体运动。  这对保持重心的稳定,维持在飞行中的平衡,有着重要意义。
   3.后肢具有适宜于栖树握枝的肌肉。这些与树栖有关的肌肉(例如栖肌、贯趾屈肌和腓骨中肌),能够借肌腱、肌腱鞘与骨骼关节三者间的巧妙配合,而使鸟类栖止于树枝上时,由于体重的压迫和腿骨关节的弯曲,导致与屈趾有关的上述肌肉的肌腱拉紧,足趾自然地随之弯曲而紧紧抓住树枝(图示)。
         栖肌并非鸟类所特有,它始见于爬行类,在高等鸟类(例如雨燕目和雀形目)消失。 4.具有特殊的鸣管肌肉,可支配鸣管(以及鸣膜)改变形状而发出多变的声音或鸣啭。
  鸣肌在雀形目鸟类(鸣禽)特别发达。 鸟类的颌肌、前后肢肌和鸣肌,常做为研究鸟类分类学的依据。  近年来对有关鸡类的后肢肌群、鸮类的鸣肌和鸥类的翅肌等分类方面以及猛禽颌肌的功能形态学等领域,都作了较深入的研究。
   (五)消化 鸟类消化系统的主要特点是:具有角质喙以及相应的轻便的颌骨和咀嚼肌群,这与牙齿退化,以吞食方式将食物存贮于消化道内有关。喙的形状因食性和生活方式不同而有很大变异。  绝大多数鸟类的舌均覆有角质外鞘,舌的形态和结构与食性和生活方式有关;取食花蜜鸟类的舌有时呈吸管状或刷状;啄木鸟的舌具倒钩,能把树皮下的害虫钩出。
  某些啄木鸟和蜂鸟的舌,借特殊的构造而能伸出口外甚远,最长者可达体长的2/3。口腔内有唾液腺,其主要分泌物是粘液,仅在食谷的燕雀类唾液腺内含有消化酶。  在鸟类中以雨燕目的唾液腺最发达,其内含有粘的糖蛋白,它们以唾液将海藻粘合而造巢,其中的金丝燕所筑的巢,即为传统的滋补品“燕窝”,目前国际上为保护金丝燕,已禁止采集。
  有些鸟类的食管一部分特化为嗉囊,它具有贮藏和软化食物的功能。雌鸽在繁殖期间,嗉囊壁能分泌一种液体,称为“鸽乳”,用以喂饲雏鸽。  食鱼鸟类(如鸬鹚和鹈鹕)以嗉囊内制成的食糜饲雏。
  鸟类的胃分为腺胃(前胃)和肌胃(砂囊)两部分。腺胃壁内富有腺体,可分泌粘液(为一种强酸)和消化液;肌胃外壁为强大的肌肉层,内壁为坚硬的革质层(中药“鸡内金”就是这个部分),腔内并容有鸟类不断啄食的砂砾。
  在肌肉的作用下,革质壁与砂砾一起将食物磨碎。  砂砾对于种子的消化有密切关系,实验证明,胃内容有砂砾的鸡,对燕麦的消化力提高3倍,对一般谷物及种子的消化力可提高10倍。肉食性鸟类的肌胃不发达。
  鸟类的直肠极短,不贮存粪便,且具有吸收水分的作用,有助于减少失水以及飞行时的负荷。在小肠与大肠交界处着生有一对盲肠,在以植物纤维为主食的鸟类(如鸡类)特别发达。  盲肠具有吸水作用,并能与细菌一起消化粗糙的植物纤维。
  有人认为盲肠液有显著的集聚维生素B的作用。肛门开口于泄殖腔,这一点还保留着似爬行类的特征(图示)。     鸟类泄殖腔的背方有一个特殊的腺体,称为腔上囊。腔上囊在幼鸟发达,到成体则失去囊腔成为一个具有淋巴上皮的腺体结构(图示)。
         腔上囊尽管已被公认是一种淋巴组织,但近来有人提出,它似乎能产生具有免疫成分的分泌物,其中含有类似肾上腺皮质激素或甲状腺激素的活性。腔上囊还被用做鉴定鸟类年龄的一种指标,特别在鉴定鸡形目鸟类的年龄方面已被广泛应用。
   鸟类消化生理方面的特点是消化力强、消化过程十分迅速,这是鸟类活动性强,新陈代谢旺盛的物质基础。  实验证实,以谷物、果实或昆虫所饲喂的雀形目鸟类,经1。5小时后即可通过消化道。
  绿嘴黑鸭(Anas rubripes)的食物经 30分钟后即可排出。高度的消化力和能量消耗,使鸟类食量大,进食频繁。雀形目鸟类一天所吃的食物约相当体重的10%~30%。蜂鸟一天所吃的蜜浆等于其体重的一倍。
    体重1500g的雀鹰,能在一昼夜吃掉800g~1000g肉。这些都与高能量消耗密切相关。据计算红喉蜂鸟休息时,每小时每克体重消耗10。7mm3~16。0mm3的氧气,但在飞翔时则增大到85mm3。
   鸟类主要的消化腺是肝脏和胰脏,它们分别分泌胆汁和胰液注入十二指肠。  在功能上与其他脊椎动物没有本质的区别。 (六)呼吸 鸟类的呼吸系统十分特化,表现在具有非常发达的气囊系统与肺气管相通连。
  气囊广布于内脏、骨腔以及某些运动肌肉之间。气囊的存在,使鸟类产生独特的呼吸方式——双重呼吸这与其他陆栖脊椎动物仅在吸气时吸入氧气有显著不同。  鸟类呼吸系统的特殊结构,是与飞翔生活所需的高氧消耗相适应的,实验表明,一支飞行中的鸟类所消耗的氧气,比休息时大21倍。
  气囊也是保证鸟类在飞翔时供应足够氧气的装置。鸟类在栖止时,主要靠胸骨和肋骨运动来改变胸腔容积,引起肺和气囊的扩大和缩小,以完成气体代谢。当飞翔时,胸骨做为??翅肌肉(胸大肌和胸小肌)的起点,趋于稳定,因而主要靠气囊的伸缩来协助肺完成呼吸。
    扬翼时气囊扩张,空气经肺而吸入;??翼时气囊压缩,空气再次经过肺而排出。因而鸟类飞翔越快,??翼越猛烈,气体交换也越快,这样就确保了氧气的充分供应。 鸟类肺与气囊的构造十分复杂,这里只着重阐明结构的特点和机能(图示)。
       鸟类的肺相对体积是较小的,是一种海绵状缺乏弹性的结构。  这种结构主要是由大量的细支气管组成,其中最细的分支是一种呈平行排列的支气管,称为三极支气管或平行支气管。
  在三级支气管周围有放射状排列的微气管,其外分布有众多的毛细血管,气体交换即在此处进行,它是鸟肺的功能单位。从这个意义来说,相当于其他陆栖脊椎动物(特别是哺乳类)的肺泡,但在结构上又有本质的区别,即肺泡乃系微细支气管末端膨大的盲囊,而鸟类的微气管却与背侧及腹侧的较大支气管相通连,因而不具盲端(图示)。
           鸟类的微气管直径仅有3μm~10μm,其肺的气体交换总面积(cm2/g体重)比人约大10倍。 气管入肺之后,成为贯穿肺体的中支气管(也叫初级支气管)。
  中支气管向背、腹发出很多分支,称背支气管与腹支气管,它们又总称为次级支气管。  背、腹支气管借数目众多的平行支气管三级支气管)相互联结,气体在肺内沿一定方向流动,即从背支气管→平行支气管→腹支气管,称为 d-p-v系统”。
  也就是呼气与吸气时,气体在肺内均为单向流动。 气囊是鸟类的辅助呼吸系统,主要由单层鳞状上皮细胞构成,有少量结缔组织和血管,它缺乏气体交换的功能。  鸟类一般有9个气囊,其中与中支气管末端相通连的为后气囊(腹气囊及后胸气囊),与腹支气管相通连的为前气囊(颈气囊、锁间气囊和前胸气囊);除锁间气囊为单个的之外,均系左右成对。
  气囊遍布于内脏器官、胸肌之间,并有分支伸入大的骨腔内。 大体而言,当鸟类吸气时,新鲜空气沿中支气管大部直接进入后气囊(一些具有“新肺”的种类,有一小部气体经过新肺的三级支气管后再进入后气囊),与此同时,一部分气体经次级支气管(背支气管)和三级支气管、在肺(也称“古肺”)内微气管处进行碳氧交换。
    吸气时前、后气囊同时扩张,呼气时同时压缩。当鸟类呼气时,肺内含CO2多的气体经由前气囊再排出。此时后胸气囊中所贮存的气体经由“返回支”进入肺内进行气体交换,再经前气囊、气管而排出。
  通过对标记气流的实验发现,一股吸入的空气要经过2次呼吸运动才最后排出体外。当然作为鸟类的连续呼吸过程,不论每一次吸气及呼气,肺内总是有连续不断的富含氧气的气体通过,这是与其他脊椎动物不同的。   鸟类后气囊与前气囊的收缩和扩张是相协调的,这就使鸟类在剧烈飞翔时,前后气囊随着??翅节律而张缩,犹如几副抽气机,不断地把空气抽入肺内再行排出。
  最近的一些研究指出,鸟类在飞翔时,其??翅的频率并不一定与呼吸频率相协调。鸽和乌鸦??翅与呼吸的频率为l:l,而那些??翅快的种类(雉鸡、山鹑和野鸭)则为5:1。  这种协调关系在飞翔中是有变化的。
   气囊除了辅助呼吸以外,还有助于减轻身体的比重,减少肌肉间以及内脏间的磨擦,并为快速热代谢的冷却系统(有人计算一只飞着的鸽,摄入空气的3/4是用于冷却)。 鸣管是由气管所特化的发声器官,位于气管与支气管的交界处(图示)。
    此处的内外侧管壁均变薄,称为鸣膜。  鸣膜能因气流震动而发声。鸣管外侧并着生有鸣肌,它的收缩可导致鸣管壁形状及紧张程度发生改变。鸣禽(雀形目鸟类)的鸣管及鸣肌均甚复杂,加上鸟类双重呼吸的特点,使吸气及呼气时均能振动鸣管而发出悦耳多变的鸣啭,这一点与其他动物也有所不同。
  一般陆栖脊椎动物(例如哺乳类)的发声器官均位于气管上端,且绝大多数仅在呼气时发声。  鸟类的喉门由4块部分骨化的软骨构成,虽非发声器官,但能通过喉门的运动而调节声调。 ((更详细的看这里: 。
  

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
生物学
出国/留学
院校信息
人文学科
职业教育
升学入学
理工学科
外语学习
学习帮助
K12
理工学科
生物学
农业科学
数学
化学
天文学
环境学
建筑学
工程技术科学
地球科学
生态学
心理学
物理学
生物学
生物学
举报
举报原因(必选):
取消确定举报