1.锐角三角形ABC中,已知H为垂心,AD为BC边上的高,E为BC的中点,若AD=BC=5,则HD+HE的长是______。
2.平行四边形ABCD的对角线交于点O,延长AB至点F,使BF=c,连结OF交BC于E,设AB=a,BC=b,则BE=_____。
3.已知三角形ABC中,E、F为BC边上的三等分点,D在AC上,AD:CD=1:2,AE,AF交BD于P,Q,则PB:PQ:QD=_____。
4.已知三角形的三条中线长分别为9,12,15,则这个三角形面积=_______。
5.三角形ABC中,D是AC上一点,AD:CD=1:2,E为BD中点,延长AE交BC于F,则BF:FC的值为_____。
6.正方形ABCD的边长为12cm,E是CD上的一点,且DE=5,AE的垂直平分线交AD、AE、BC于P、M、Q,则PM/MQ=_______。
7.梯形ABCD中,AB平行于CD,且AB:CD=1:2,(1)若梯形的中位线EF分别交AC、BD于点H、G,试依据相似四边形的定义(对应角相等,对应边成比例的四边形),证明四边形ABCD相似于四边形HGAB。(2)是否存在平行于AB的直线L,将梯形分割成两个相似梯形,设AB=1,CD=2。若存在,请求出直线L被梯形所截得的线段长,并加以证明;若不存在,请说明理由。
8.已知四边形ABCD外接圆O的半径为2,AC与BD的交点为E,AE=CE,AB=更号二AE,且BD=二更号三,求四边形ABCD的面积
1。锐角三角形ABC中,已知H为垂心,AD为BC边上的高,E为BC的中点,若AD=BC=5,则HD+HE的长是 5/2 (注:HD+HE的长一定是固定的,否则无数个答案毫无意义,所以用特殊的方法找出结果即可,不妨使AB=AC)
2。 平行四边形ABCD的对角线交于点O,延长AB至点F,使BF=c,连结OF交BC于E,设AB=a,BC=b,则BE= bc/(a+2c) (注:取AB的中点G,则OG∥BE)
3。已知三角形ABC中,E、F为BC边上的三等分点,D在AC上,AD:CD=1:2,AE,AF交BD于P,Q,则PB:PQ:QD= 21:9:5 (注:过D作BC的平行线交AE、A...全部
1。锐角三角形ABC中,已知H为垂心,AD为BC边上的高,E为BC的中点,若AD=BC=5,则HD+HE的长是 5/2 (注:HD+HE的长一定是固定的,否则无数个答案毫无意义,所以用特殊的方法找出结果即可,不妨使AB=AC)
2。
平行四边形ABCD的对角线交于点O,延长AB至点F,使BF=c,连结OF交BC于E,设AB=a,BC=b,则BE= bc/(a+2c) (注:取AB的中点G,则OG∥BE)
3。已知三角形ABC中,E、F为BC边上的三等分点,D在AC上,AD:CD=1:2,AE,AF交BD于P,Q,则PB:PQ:QD= 21:9:5 (注:过D作BC的平行线交AE、AF于M、N,设DN为a。
则NM=a,BE=EF=FC=3a,再用线段成比例即可)
4。已知三角形的三条中线长分别为9,12,15,则这个三角形面积= 72 (注:不妨设中线AD=12,BE=15,CF=9,重心为O,延长OD到G,使OD=DG,连结CG,因为OC=6,OD=4,OB=10,所以OG=8,CG=10,根据勾股定理得出三角形COG为直角三角形,因为三角形ABC的面积 = 6倍的三角形COD的面积
所以三角形ABC的面积 = 6*12=72)
5。
三角形ABC中,D是AC上一点,AD:CD=1:2,E为BD中点,延长AE交BC于F,则BF:FC的值为1:3 (注:过D作BC的平行线交AF于G,设DG=a ,则BF=a,CF=3a)
6。
正方形ABCD的边长为12cm,E是CD上的一点,且DE=5,AE的垂直平分线交AD、AE、BC于P、M、Q,则PM/MQ=5:19 (注:过M作AB的平行线交AD、BC于E、F,则ME、MF分别为***的中位线,ME=5/2 ,MF=19/2 )
7。
梯形ABCD中,AB平行于CD,且AB:CD=1:2,(1)若梯形的中位线EF分别交AC、BD于点H、G,试依据相似四边形的定义(对应角相等,对应边成比例的四边形),证明四边形ABCD相似于四边形HGAB。
(2)是否存在平行于AB的直线L,将梯形分割成两个相似梯形,设AB=1,CD=2。若存在,请求出直线L被梯形所截得的线段长,并加以证明;若不存在,请说明理由。
(1)提示:设对角线交于O,先证H、G三等分EF ,H、O三等分AC ,O、G三等分BD,则BH∥AD,AG∥BC,再根据平行线的性质证明角相等,线段成比例即可。
(2)设直线L∥CD交BC于M,交AD于N,两个梯形的对应角相等,若MN^2=AB*CD,就求出MN=√2 ,则AB/NM =NM/CD = 1/√2 ,下面再验证是否BM/MC = AN/DN =1/√2即可,过B作AD的平行线交MN、CD于E、F,则AB=EN=DF=CF=1 , ME=√2 - 1 , 因为ME∥CF ,
所以BM/BC =ME/CF=√2 - 1 ,所以BM/CM =1/√2 ,同理AN/DN =1/√2 ,
所以存在这样的直线,直线被梯形所截得的线段长为√2
8。
已知四边形ABCD外接圆O的半径为2,AC与BD的交点为E,AE=CE,AB=√2AE,且BD=2√3,求四边形ABCD的面积。
在ΔABD中BD=2Rsin∠BAD ,所以sin∠BAD=2√3/4 =√3/2 ,所以∠BAD=60度
设AE=CE=k ,则AB=√2k ,所以AB^2 =AE*AC
所以ΔABE∽ΔACB ,所以∠ABE=∠ACB ,因为∠ADB=∠ACB
所以 ∠ADB=∠ABD ,所以 ΔABD为等边三角形
因为四边形ABCD的面积=2倍的ΔABD的面积
所以四边形ABCD的面积=2*1/2 *BD^2 *sin60 =12 *√3/2 =6√3
。收起